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Abstract

Physical and chemical propertics of meteor plasma are investigated in an attempt to
obtain the chemical composition of meteoroids from their spectra. In this analysis,
the effective thermal equilibrium state is assumed for the meteor plasma by defining
an effective excitation temperature. For calculating the diffusion of the meteor column,
two kinds of models, (i) an elastic sphere model and (ii) a pressure-balance model, are
considered,

The theory is applied to the spectra of two Leonid meteors observed on November
16, 1965 and their physical conditions and chemical compositions are determined. The
following results are obtained:

(1) Elements of sodium, magnesium, caleium, manganese, iron and cobalt are
found in the meteoroids,

(2) Magnesium, iron and cobalt constitute a group of large abundance.

(3) Sodium, calcium and mangancse belong to a group of small abundance.

1. Introduction

It is now widely accepted that almost all meteors originate from comels while meteorites are
from asteroids. Therefore, acquiring the knowledge about the chemical composition of meteoric
substance is quite impotant for studying the origin and the evolution of the solar system. It may
be expected that the composition can be determined by chemical analysis of meteoroids collected
in the :hpace. However, the collection of meteoroids in the space is an extremely difficult task.

At present, the determination of the chemical composition can be done only through analyses
of meteor spectra except in the case of meteorites. However, it is not easy to obtain the compo-
sition of the meteoroids from the spectral analysis. The main reason is that the meteor radiation
originates from a very complicated phenomenon and contains many physical processes which are
still not well known. Moreover, there are several unknown parameters which are necessary in
calculating the physical condition of the meteor plasma. As a result, the knowledge about the
chemical composition of the meteoroids has remained rather incomplete.

The theoretical approaches to the analysis of the meteor radiation may be divided into two
ways at present. One approach is based on the detailed investigation about the collision proces-
ses between the atoms evaporated from the meteoroid (e, Mg, Ca, Na, Al, ete.) and air molecules
(Ny and Oy) because the meteor radiation comes essentially from their collisions. This approach
seems to be most reasonable. However, the main current of research in this line is only experi-
mental (Boitnott and Savage 1970, 1971; Savage and Boitnott 1971, 1972, 1973). This is because
the theory of inelastic collisions between heavy particles is quite complicated and it is difficult
to obtain practical solutions. No rigorous theory is available which can be applied to the inves-
tigation of the meteor composition.

* Earthquake Research Institute, University of Tokyo.
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An alternative approach is an application of the theory of the Lhcrm:-%&ef]ﬂﬁibrium to the mete-
or radiation. This application is not always possible because the meteor radiation is not gener-
ated in thermal equilibrium state, It is, however, thought that the application is useful within
a limited condition after giving some modifications to the theory. Though the method is con-
ventional and the reliability of the result is rather limited, almost all the results about the meteor
composition have been obtained by this method (Harvey 1973a, 1973b; Ceplecha 1964). This is
because calculations are considerably simplified. Details of the method, however, have never
bheen reported.

In this paper, an attempt is made to present the relations which lead to the determination of
the physical condition in the meteor plasma and the chemical composition of the meteoroid. In
Section 2, relations concerned with the meteor radiation are given under the assumption of ef-
fective thermal equilibrium. Iunizatidh% and dis@r\iélz.\tions in the meteor plasma are taken into
account. The diffusion of the meteor plasma is treated by adopting two models, an elastic sphere
model and a pressugﬁ;hlancc model. The mean radius of the ionized column of the meteor together
with its electron déﬁgity are estimated for each model. The duration time of the meteor radiation
is also calculated by using the elastic sphere model. In Seetion 3, the theory is applied to two
spectra of meteors which belong to Leonid meteor shower and which were observed by the auther
on November 16, 1965, and their compositions are calculated. Irom the results, relative advan-

tages of the two models are discussed.

2. Theoretical Treatment

2.1. Meteor Plasma

The meteor phenomenon occurs in the case when a small particle moving in the interplane-
tary space plunges into the atmosphere of the earth at a high speed. The particle is called a me-
teoroid. The meteoroid is heated rapidly by the collisions to air molecules and evaporates little
by little from the surface. Meteoric gas thus produced forms a meteor plasma through dissoci-
ations and ionizations of gas particles by mutual collisions or collisions to air molecules, The
plasma decelerates and is left behind the meteoroid as a slender column along the meteor path.
Though the plasma is initially hot and dense, it diffuses gradually into the surrounding air and
becomes cold.

A meteor is usually observed by its light. The light of meteor originates chiefly from the
column of meteor plasma in an early stage of the diffusion. The duration time of the meteor radia-
tion is very short and is supposed to be not more than 1 millisecond at any point of the meteor
path except in the case of meteor train.

A meteor appears in a height range from 100 km to 80 km in an ordinary case. Here, the
mean free path of air molecules varies from 7 cm to 0.5 em. On the other hand, the initial mass
of any meteoroid dose not exceed 1 ¢ and its diameter is less than 1 em even in the case of bright
meteors, Because the diameter of the meteoroid decreases according as the meteoroid penetrates
into the air, the diameter is always smaller than the mean free path of surrounding air molecules
in the process of the meteor ablation. Then, no compressed air cap is formed in front of the me-
teoroid and no shock wave is generated. In this case, the kinetic theory of gases is useful for
considering the interaction between the meteoroid and air molecules or for calculating the diffu-
sion of the meteor plasma. For example, the total effect given to the meteoroid by the collision
to the air molecules can be calculated by summing up the effect of the collision to an individual
air molecule. Then, we assume that the state of the meteor plasma can be considered by inte-
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grating the motion of an individual plasma particle in the elastic sphere model.

From the standpoint of meteor observations, there is little clue for considering the structure
of the plasma column, Observational data have not been given for the density distribution and
for the temperature distribution in the meteor plasma, Data also have not been known for the
structural change with time in the plasma except for the diffusion of the ionized column observed
by radio method (Greenhow and Neufeld 1955).

According to the above mentioned reason, it is inevitable to take some simplified assump-
tions for the meteor plasma in the analysis of meteor spectra. In this paper, we assume that the
plasma is homogeneous and has a constant effective temperature, a constant chemical composi-
tion, a constant density and a constant radiation densily during the time of the meteor radiation.
By this assumption, the calculation of the meteor composition becomes possible if only one value
is given for each parameter by an appropriate way.

2.2, Effective Ewxcitation Temperature Tﬁ?\%};}ﬁf;ﬂiiﬁfﬁ

Meteor spectra are composed of a number of emission lines which are produced mainly by
the collisional processes between meteor atoms and air molecules, As will be shown later, the
relative intensities of the spectral lines can be interpreted by a single temperature., This tem-
perature is called the “effective excitation temperature”, and the meteor plasma is considered
to be almost in thermal equilibrium at this temprature (Ceplecha 1964; Millman 1932). This
effective excitation temperature is supposed to be the average value of excitation temperatures
with respect to the radiating time and volume of the plasma column. The relations in effective
thermal equilibrium were extended and applied for caleulating the ionization of the meteor atoms
and the dissociation of the molecules evaporated from the meteoroid (Harvey 1973h).

The effective excitation temperature is defined in the following way.

In a volume of gas in thermal equilibrium, the emission rate of radiation to a spectral line

is given by the equation;
Io=heg’ AN-exp (—2/kT)/4x2B(T), (1)

where N : the number of atoms or ions considered in the column along the line of sight,
T ¢ excitation temperature,
B(T) : partition function as a function of 7,
q ¢ statistical weight of the upper level,
A : probability of the spontaneous emission,

1 : wavelength of the spectral line,

b : excitation potential of the upper level,

h ¢ Planck’s constant,

¢ : speed of light / AL
and k : Boltzmann’s constant, fo o4 10" ({(' h

The spontaneous emission probability A relates to the absorption osecillator st.rciugth f by the

following equation;

Bnle?

' A = - = : , ‘
g ——ilf: Ho T (2)
where ¢ : charge of the electron, / (2w /0 1 C
m : mass of the electron, 7. 10G0E v 0~ P
[

g : statistical weight of the lower level,

and f : absorption oscillator strength.
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By assuming that the radiation continues for the time ¢ without changing the state, the integrated
intensity I emitted in each line is proportional to the product of I, and ¢t. That is, the relation

is written as

I=il;, (3)
Put
N 2xeh
C—tjjﬁ,)—"rmr“ ) (4)
then, equation (3) becomes
I_.c—ffﬂf-exp(—-x/rci'). (5)

From equation (5), the excitation potential ¥ of the upper level is written as
1=kT-In C+ kT In(gf/ 1%, (6)

then, a linear relationship between ¥ and In (yf/I1*) holds.

Though equation (6) is valid only for the state of thermal equilibrium, experimental plots of
In (gf{13*) versus 1 yield approximately a linear relation for the data obtained from meteor spec-
tra, Then, the value of T will be obtained from the most probable value of the coefficient. This
temperature is called the effective excitation temperature 7', of the meteor plasma.

In general, the effective excitation temperature thus obtained differs from element to element
and its standard deviation often amounts to some hundred degrees. This rather large difference
has to be studied in future; in the followings, however, the effective excitation temperature T,
obtained from Fel will he taken as the standard because there are a number of Fel lines in the
meteor spectra and the temperature is well determined for Fel.

For example, fourteen spectral lines which are free from blending and for which good meas-
urements could be done are selected for Fel lines in the meteor spectrum No. 56 observed by the
auther. Their relative magnitudes JM, wavelengths 1, the values of log (gf), the excitation po-
tentials ¥ and the values of log (¢f/I4°) are listed in Table 1. Here, the relative intensity 7 is ob-
tained by the relation;

dM=—2.5-log (I). (7)

As illustrated in Figure 1, the plot of the excitation potentials versus log (ff/I2*) shows
apparently a linear relation. Evidently from equation (6), the gradient of the line is proportional
to the effective excitation temperature 7,. By applying the least squares method, the effective
excitation temperature for the meteor spectrum No. 56 is determined as

T';=38184"K +3856°K (s.d.). (8)
Similarly for the other meteor spectrum No, 59 (Figure 2), the effective excitation temperature of
T, =3195°K +689°K (s.d.) (9)
is obtained. Both temperatures coincide with each other though the standard deviations are
large.
2.3. Atlomic Abundance in the Meteor Plasma

If the radiating plasma is physically homogeneous in the meteor trail, the ratio in number
of two radiating elements A and B would be given by (Harvey 1973a)

N LBAT)  gufided
N, IaBb(Tc) Gafuls®

€xp [(xa. g xh)/ch} ] (10)
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Table 1. Intensities of Fel Lines (Spectrum No. 56).
Identification* Relative . : Excitation of i
number magnitude Yayelength log (9f) potential log 13 log Jy
= e et e R
4 —1.08 4046 A 0.43 7.26 13.18 —4.67
6 —-1.14 4132 —{).68 7.3 12.01 —3.40
6 -1.31 4202 —0.55 7.08 12,06 —3.72
8 —1.44 4272 0.02 7.00 12.56 —4,30
9 —1.,29 4326 —0.14 | 7.13 12,44 —4,056
10 —1.48 4384 —0.32 6.87 12,16 —4.,03
11 —1.37 4427 —2.89 4.55 9.62 —8.77
12 -1.43 4482 —2.85 | 4,53 9,63 —3.75
18 —1.09 4921 —0.09 | 8.564 12,40 —2.63
19 —0.98 4958 0,26 8.48 12,78 —3.07
22 —-1.14 5110 —3.34 3.806 9.07 —3.90
24 —1,49 5227 —(),84 - 6.26 11.41 —~3.88
27 ~1.25 5371 ~1.54 .21 | 107 ~4,28
31 —0.96 5498 —2.49 5.21 | 9.91 —3.42
log B (8184°K)=1.37 log ofy=—38.78+0.53
* See Table 7.
x10"126rg
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Fig. 1. The relation between excitation polentials Tig, 2. The relation between excitation potentials
¥ and log (9f/12%) for the lines of Fel in L and log (gf/13%) for the lines of Fef in
the meteor spectrum No. 56. the meteor spectrum No. BY.

ey

where suffix “'a” is appended to the symbols corresponding to the element A, and 8" to the element
B.

Equation (10) should be satisfied for any combination of A and B if the meteor plasma were
in thermal equilibrium. The experimentally deduced value of N,/N,, however, depends consider-
ably on the choice of spectral lines. To minimize observational errors ar far as possible, the value

Jo 18 defined for each line of element A by
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gn’l .}"f.'.

When there are n lines available for the element A, the mean value of J, is given by

Jr_l — - exp (xn/k Tr:)- (11)

Jo= l/ f!_: (12)

In a similar way, </, is obtained for the spectral lines of element B, and the number ratio can be

represented by
o S 4 (13)

In actual calculations, Fel was adopted as the element B, Then, the amount of the other
element was always given in the ratio relative to FeI.r

2.4. Jonization and Dissociation

The number ratio obtained in Subsection 2.3 must be corrected for ionization and dissociation
to reduce it to the real abundance ratio of the elements in the meteoroid.

The decomposition of the meteoroid occurs through several stages of dissociations and ioni-
zations in the air. In early phases of the decomposition, the processes are certainly irreversible;
the recombinations cannot compete with the dissociations. In the meteor plasma, however, it
seems appropriate to assume that atoms and molecules are in both ionization and dissociation
equilibrium. In this case, the degree of the jonization and the dissociation are determined solely
by the temperature, If the equilibrium is not attained, they depend upon the cross section of all
elementary processes whose values are not well known yet. In this paper, the corrections for
the ionization and the dissociation are calculated under the assumption of thermal equilibrium.

As will be shown later, these correction factors are less than 2 for most of neutral atoms.
Therefore, the correction factors calculated under the assumption of thermal equilibrium would
not lead to a serioug error in the final results.

When the ionization temperature is equal to the effective excitation temperature, the bahﬂ s

mmzatmn formula holds;

NN, { 2B(T.) 2xrmkT,

3/2
T } o (~10/ET), (14)

where No, Ny, N, : number densities of neutral atoms, singly ionized atoms, and free electrons,
respectively,
By(T.), B(T.): partition functions of neutral atoms/and _singly ionized atoms respectively,

and Xo: dlonization potential of the atom.

For T, <4000°K, it is unnecessary to take into accmmt the ionization stages higher than the
first. In actual calculations, the partition functions after Aller (1963) can be adopted.

It is known that a large energy is required for removing oxygen from the oxide of metal but
a relatively small energy is sufficient for the other stages of the dissociation. Hence, as the first
approximation, only the dissociation stages of oxides are taken into consideration for the decom-
position of the meteoroid. Other stages of the dissociation or the dissociation other than the
oxides are neglected here,

(1) Diatomic molecule (type AB)

There are several elements which compose of this type of molecules in the meteoroid. They
are, for example, CaQ, M;Ig(), FeO, CoO. and MnO. For the diatomic molecule AB, the dissociation
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ToN1zaTION POTENTIALS OF ATOMS OF ASTROPHYSICAL INTEREST
(National Burcau of Standards Circular No, 467, C. E. Moore)
By on P ex e sesaTrax- T II X v

1 H hydrogen 13.60 eV
2 He Helium 24.58 54,40
3 Li lithium 5,39 75.62
4 Be beryllium 0.32 18.21
5 B boron 8.30 25,15
G C carbon 11.26 24.38 47.87 , 64,48
7 N nitrogen 14.53 20.59 47.43 77.45
8 (6] oxygen 13.61 35,11 54.89 77.39
9 F fluorine 17.42 34.98 62.65 87.14
1 Ne neon 21.56 41,07 63.50 097.02
11 Na sodium 5,14 47.29 71.65 08.83
12 Mg magnesium 7.64 15.03 80.12 109.29
13 Al aluminum 5.98 13.82 2844 119.96
14 Si silicon 8.15 16.34 33.46 45.13
15 P phosphorus 10.48 19.72 30.16 51.35
16 S sulphur 10,36 23.40 35.00 47,29
17 Cl chlorine 13.01 23.80 39.90 53.50
18 Ar argon 15.76 27.62 40.90 59.79
19 K potassium 424 3181 46.00 60.90
20 Ca caleium 6.11 11.87 51.21 67.00
21 Se scandium 6.54 12.80 24.75 73.90
22 Ti titanium 6.82 13.57 27.47 43.24
23 v vanadium 6.74 14,65 29.31 48,00
24 Cr chromium 6.76 16.49 30.95

25 Mn - manganese 7.43 15.04 33.69

26 Te iron 7.87 16.18 30.64

27 Co cobalf 7.80 17.05 33.49

28 Ni nickel 7.63 18.15 35.16

29 Cu copper rov b 20.29 36.83

30 Zn zine 9.39 17.96 30.70

31 Ga gallium 6.00 20.51 30.70

32 Ge germanium 7.88. 15.93 34.21

33 ~As arsenie 9.81 18.63 28.34

34 Se selenium 9.75 21.50 32.00

35 Br - bromine 11.84 21.60 35.90

36 Kr krypton 14.00 24.56 36,90

37 Rb rubidium 4,18 27.50

38 Sr strontium 5.60 11.03

39 Y yitrium 6.38 12.23

40 Zr zirconium 6.84 13.13°

41 Nb niobium 6.88 14.32

42 Mo molybdenum 7.10 16.15

43 Te technetium 7.28 15.26

44 Ru ruthenium 7.36 16.76

45 Rh rhodium 7.46 18.07

46 Pd palladium 8.33 19.42

47 Ap silver 7.57 2148

43 Cd cadmium - 8.99 *16.90

49 In indium 5.78 18.86

5O Sn tin 7.34 14.63

51 Sb antimony 8.64 16.50

52 Te tellurium 9.01 18.60

53 I iodine 10.45 19.09

54 Xeo xenon 12.13 21.20

b5 Cs caesium 3.89 25.10

56 Ba barium 5.21 10.00

57 La lanthanium 5,61 11.40

72 Hi hafnium 7.00 14.90

73 Ta tantalum 7.88 16.20

74 w . tungsten 7.93 17.70

75 Re rhenium 7.87 16.60

76 Os osmium 8.70 17.00

i Ir iridium 9.00

- 78 Pt platinum 9.00 18.56

79 Au gold 9.22 20,50

80 Hg mereury 10.43 18.75

81 Tl thallium 6.11 20.4

82 Pb lead 7.42 15,03

83 Bi bismuth 7.29 16.68
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TABLE 3-2A

Parrrrion FuncTions
(Temperatures in degrees Kelvin)

Ms5-00§

3600 5700 8000 10,000 3600 5700 8000 10,000
Lil 2.0 24 30 3.6 Cul 204 25.2 32.4 41
 Bel 1.0 1.06 1.15 1.41 Cull 1.0 1.05 1.29 1.74
C 9.1 9.3 9.5 9.8 Gal 6.0 6.0 6.2 6.5
N 1.0 1.08 1.35 1.70 Gel 7.6 8.5 9.8 10.3
0O 8.5 8.9 9.1 9.4 Gell 3.8 4.37 4.8 5.0
Nal 2.00 2.40 3.17 4.3 RbI 22 2.4 8.3
Mgl 1.0 1.05 1.20 1.48 Srl 1.056 1.41 2.9 5.2
Mg IT 2.0 SrII 204 230 2.82 9.46 -
AlT 5.76 6.90 6.2 6.6 Y1 110 14.1 21.8 25.0
AlTl 1.0 - YII 1438 174 214 25,7
Sil 8.9 9.5 10.45 11.2 Y 11X : 10.5 10.7
Sill 5.60 5.70 5.75 5.9 Zr1 234 40.8 675 93
PI 4.0 4.5 5.75 Zr 1T 417 51.2 675 89
PII 8.0 8.1 8.9 10 Zr 111 25 27.6
8 8.5 8.5 8.7 9.0 NbI 40 60 91 129
KI 3.5 4.1 7.8 15.5 Nb IT 33 5285 78 98
Cal 1.05 1.32 2.62 4.7 Mol 74 10.7 19 34
Call 204 230 2.82 3.55 Mo II 5.35 8.1 15.1 25
Sel 11.0 13.8 210 30 Rul 257 38 56 79
eIl 209 240 205 33.2 Rull 19.6 26 35.5 47
Til 23.0 340 540 81.2 Pal 193 3.9 6.18 8.3
Till  48.0 56.2 72.5 85.0 PAdII 6.9 7.6 8.5 9.3
VI 38.0 540 76 107 Agl 20 2.0 2.14 2.3
VII 355 49 58 69 AglIl 1.0 1.0 1.0 1.0
Crl 8356 12,0 18.6 25.8 Cdl 1.0 1.0 1.05 1.12
Crll 6.2 8.1 11.7 17.4 InI 3.6 4.3 5.0 5.8
3600 5700 8000 10,000 3600 5700 8000 10,000
Mnl 6.0 Tl 9.3 13.2 InIl 2 4.1 5.1 5.9
MnII 7.2 8.3 9.5 10.8 Snl 41 5.9 7.2 8.3
Fel 24 31 44.6 60.1 SnII 276 3.4 3.9 4.2
Fell 37 47 56 67.5 * 8bI 43 5.1 6.3 7.4
Te T1I 25 29 ShIT 2406 3.8 5.0 6.0
Col 248 35 46.7 60 Bal 152 3.55 8.1 14.1
Coll 22 31 40 47 Ba 1T 3.24 4.7 6.0 7.1
Co IIT 25.7 232 + LgX 19 22 31
Nil 28 32.3 3 o 4Ly La Il 28 33 42 :
NiII g 12.0 16.6 22 TbI 120 1.82 2.63 3.66
Ni I 18 18 PbII 2.0 - 214 2,34 2.50
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K. Nagasawa

feteors and their spectra : The research of meteors made rapid progress
through some large scale observation projects. They are The Arizona Expedition,
The Harvard Fhotographic Meteor Programme, The Prairie Meteorites Network and
The NASA LRC Faint Meteor Spectral Patrol. As the results of these observations,
+he following understandings about the origin, structure and composition of
meteoroids are obtained.
(1) Most of Meteoroids and meteorites have their origins in the solar system.
(2) The meteoroids generated from comets are generally light, porous and
fragile, while meteorites are dense, compact and hard.
(3) The composition of the meteoroids became gradually clear by the analysis
of meteor spectra. Although several papers have been published, the
quantitative results are not always satisfactory. It seems especially

important to find the way which estimates the amount of silicon in

meteorcids.
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The ecast room of the NASA-Langley Research Center meteor observatory at Organ Pass, New Mexico, contains this battery of

meteor spectrographs that provides almost complete sky coverage above an altitude of 30 degrees, The small tubes on the camera

barrels hald photoelectrie detectors that open the spectrograph shutters when a meteor appears. This photograph by the author
looks toward the southeast, with White Sands Proving Ground in the lar distance.

Four Years of Meteor Spectra Patrol

GALE A. HARVEY, NASA-Langley Research Center

URING the initial development of the
D SPUICE Program, 4 major engineering

uncertainty was the risk of damage
to spacecraft from meteoroids. The Langley
Research Center's studies and photogruaphic
patrol of meteor spectra were originally part
of the NASA program to investigate this
potential hazard. These studies were
directed toward determining meteoroid
masses in the range from 0.001 1o 10 grams,
for such particles were thought to present
the greatest danger.

When a meteoroid enters the earth's up-
per atmosphere, air resistance causes the
body’s high kinetic energy to be transformed
into heat., which vaporizes the meteoroid
and produces a short-lived luminous plasma
(ionized gus) that we see as a meteor trail.
The radistion emitted by this plasma cun be
recorded on a spectrogram to be analyzed
for meteoroid composition and radiation
processes.
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T obtain a large sample of meteor spec-
tra in the mass range of interest, an
automatic patrol was developed, directed,
and supported by the Langley Reseurch
Center. The patrol wus operated by per-
sonnel of the Smithsonian Astrophysical
Observatory [rom 1968 through 1972,

After the immediate aims of the spectral
studics were accomplished, the rescarch wis

redirected 1o the more basic problem of

the relative abundances of the chemical

elements in specilic meteors and groups of

meteors.  Our current research is directly
coneerned with cosmogony (the origin and
evolution of the solar system and the
universe), and has (wo primary ohjectives.

The first is to provide information about
the more abundant nonvolatile elements in
certain comets, und thus, indirectly, in the
curly solar-system plasma. Most meleors
are produced by material associated with
comets, which are generally believed to con-

sistool primordial nuatenial whose major
nonvolitile elements have not been signifi-
camtly separated by priavity o melting,

Although the evolution of comets is
poorly understood, the assaciation of certain
comets with meteorod strewms s firmly es-
tablished. ‘The chemical composition of the
particulate mutenal of comets — the
meteoroids - v probably more
representative of the comets than terrestrial
surface material s al the
earth as a whole,

much
representatnge

The second objective of this research is to
determine typical orbits for dilerent kinds
of meteorites, which are meteoraids that
survive passige through the atmosphere.
Our present understanding of the origin and
evolution of the solur system has come
mostly from the study of meteorites, Sume
of them. along with some lunar rocks. are
the oldest materials availuble for liboratory
analysis of age. chemical compuosition, and




physical conditions of the primordial solar
plasma,

However, the orbits of most meteorites
are not accurately determined, since they are
deduced from visual observations by un-
trained observers. Highly precise orbits are
known for only two meteorites: Pribram in
Crechoslovakia and Lost Cityin Oklahoma

- (Sky anp Terescort, March, 1970, page

154).  This was because quite complete
phatographic observations were made as
these two meteors passed through the at-
mosphere. Except for these (wo, the orbits
ul meteoroids before capture by the earth
are stll Largely unknown, hence their source
within the solar system remains uncertain, It
is hoped to determine representative orbits
by correlating the chemical compositions of
meteors with meteorite compositions, and
then relating the latter to the corresponding
meteor orhits. ol

A

T Patror INSTRUMIENTS

Although the total duration of & meteor is
typically one second, the effective exposure
time on lilm is extremely brief, usually less
than 0.01 second, because of the image's
rapid motion. Hence, a very fast optical
system s necessary o record faint meteor
spectra. The unpredictability of a meteor's
oceurrence and sky location requires wide-
ficld optics and long ohservation times, with
attendant problems of discriminating the
images from the sky background illumina-
tion. However, during the mid-1960's three
improvements in optical and photographic
technology made possible the recording of
meteors 100 times fainter than had been
pussible with earlier spectrographs.

First, optical-grade fused silica became
aviriluble at modest cost: this lens material
has high transmission in the near-ultraviolel
spectral region. Second, large transmission
gratings with high blaze efficiency, concen-
trating the light into selected spectral orders,
could be obtained,

Thus, we could set up a battery of 21
Maksutov slitless spectrographs at a frac-
tion of the cost of a_single Baker super-
Schmidt meteor camera, the previous major
instrumental advance in meteor optics. Qur
spectrographs have apertures of 5, 6, and §
inches and focal ratios of f/1 and f/1.3.
They combine high transmission in the near
ultraviolet (where meteor radiation is
strongest) with fast optical systems, and
make use of the more sensitive extended-red
panchromatic emulsion.

The third improvement was a method to
avoid plate fogging from background
skylight, We incorporajyd a photoelectric
meteor detector that aioated  the spec-
trograph shutter when a meteor occureed in
the field. The battery of spectrographs, pic-
tured opposite, and their electronics were
built at Luangley Research Center.

In the summer of 1968, seven spec-
trographs and related equipment were tuken
to New Mexico and placed in routine operi-
tion. More units were added over the next
I¥ months, while special equipment and
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This high-definition spectrum (No. 106 in the NASA-LRC library) of a_Taurid
meteor was obtained on November 4, 1969, It is representative of most meteors,
with iron (Ee) lines dominating the near ultraviolet and blue, magnesium (Mg) the
green, and sodium (Na) the yellow. The second-order spectrum at right has twice

the dispersion of the first order, originally

123 angstroms per millimeter. Star spec-

tra appear as horizontal streaks,

procedures were  developed  for culling,
processing, and searching the film and lor
recording the data. In all, 764 meteor spee-
tra were ohtained,

During 1971 and 1972, a pair of dircct-
photography stations were added (0 the
patrol to abtain meteor trajectory and orbit
dats. The photographs, which recorded 288
metears in 1972, were tuken with modified
K-24 acrial cameras that were equipped with
chopping  shutters, time displays, and
progrimmers.

OBSERVATIONAL ASPECTS

The NASA-LRC faint meteor spectra
patrol was operated at a site originally es-
tablished for the super-Schmidt meteor
patrol of the 1950's and later used for
Baker-Nunn satellite tracking and laser
ranging, It is at Orgun Pass, New Mexico,

4500

about 12 miles cast of Las Cruces, 5.280 feel
above sea level and with ready access Lo
U. 8. Route 70. The observing station's lon-
pitude is 106° 33 09 wesl, latitude 32° 25"
24" north, s faj

This location was chosen primarily for its
high percentage of clear nights. The number
ol useful observing hours is about four times
greater than on the East Coast, The dry
climate generally favors observing, but dust.
high winds, and scattered ultraviolet radia-
tion from lightning in summertime reduce
observing efliciency.

An important feature of the patrol was its
regular schedule of observations. with
nightly operation except for five or six days
each month around full moon. The Langley
library of meteor spectra — currently the
world's lurgest — contains essentially all of
the meteor spectra obtained anywhere dur-

N
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The laboratory spectrum of ihe_AL]_chg_[n_elmtigg, a carbonaceous chondrite,

resembles the typical meteor spectrum above, The bright features at extreme right
are due to incandescent glow from the spectrograph’s electrodes. All spectra are
from NASA's Langley Research Center, Hampton, Virginia.
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_A_nickel-iron_meteor produced spectrum No. 432 on January 26, 1971. The
" absence of a line just short of 6000 angstroms indicates that it was sodium poor,

ing January. February, and March. This is
because of the searcity of meteor showers
during this period and the fact that late
winter observing conditions are poor in

Europe. where another patrol  operates
regularly.
) =5
Sramnisticar Risurrs /M

The 764 spectra obtained by our patrol
cun he compared with only 94 known to
have been recorded in the United States
before 1967, A classilication scheme for
meteor spectri has been developed by the
Cuanadian astronomer Peter M. Millman, an
early pioneer in meteor spectroscopy. His
system is based on the number of features in
a spectrum (guality class) and the identifica-
tion of the strongest features (spectral type).

The NASA-LRC spectra and/Millman’s
classification in 1963 of 259 spectra in the
Morld List _are summarized in the tables
seen below. In general, all of the spectra are
useful for qualitative purposes, but only
those of classes a and b are valuable for
studying radiation processes and  deter-
mining the relitive abundances of the
chemical elements, :

.-'\':.il.\'.-l \'l:i"or!d

Cluvs Nua, r}_!'. Features
i More than 49 R 16
h 20 - 49 Hi 54
¢ 10-19 139 OR
d 1-9 514 121

Tvpe  Strongest Features NASY Waorld
A Mg or Na 167 82
¥ lonized Ca 13 148
i Fe or Cr 504 2%
W

Not x, v, or 2 hit] 6

; ol \
i 4500

=whlLifhy  This object was similar in composition to a hexahedrite meteorite.
A
(i3

The spectral types are shown in the second
table. Iron is the major radiating element in
most NASA-LRC spectra, whereas those in
the World List are mostly dominated by the
H and K lines of singly ionized calcium.
Strong radiation from this and other ions is
an anomalous characteristic of bright, last
meteors. Since the NASA-LRC patrol used
superior optical systems, it could record the
spectra of much fainter but more typical
meleors,

Cirmicar Comrosiiion 3\
L2

- . * el i
As e as the major nonvolatile heavy
clements are concerned, the composition of

most meteors is similiar to the sun’s, said to
be undifferentiated. with respect to these
elements.
meteors associated with comets, such as the
Leonids, Perseids, Taurids (see spectrum
No. 106 at the top of page 379), and
Giuacobinids. This similarity also holds for
the Geminids, which are not known to be
associated with a comet.,

The undifferentiated meteoroids are by
weight typically about 30 percent iron. 15
magnesium, 3 nickel, 2 cach of calcium and
aluminum, and | sodium. Most of these
clements are probably combined with oxy-
gen in the form of ferro-magnesium silicates
such as olivine and pyroxene,

The spectra of these meteors strongly
resemble low-excitation laboratory spectra
ol most chondritic meteorites, such as
Allende (Sxy anp Triscoer, May, 1969,
page 272). in which iron lines dominate the
near-ultraviolet spectral region, magnesium
the green. and sodium the yellow,

However, some meteors are strongly

AN
. 5500

£ WAVELENGTH IN ' ANGSTROMS

This unusual spectrum, No. 299, is most notable for the absence of iron or sodium

lines, It was produced on August 29, 1970, by a very-high-velocity object in

retrograde orbit. The strongest feature is the multiplet of neutral magnesium at

about 3830 angstroms. Note the I and K lines of singly ionized calcium at 3968
and 13933 angstroms, respectively. Also present are lines of silicon, aluminum,
alomic oxygen, and atomic nitrogen.

380 Sky AND TELESCOPE, June, 1974

This is particularly true of

A

differentiated with respect to the major non-
volitile elements, One type of differentiation
is evident in the high-definition meteor spec-
trum No, 432, shown opposite, in which only
iron, nickel. manganese, chromivm, and
cobalt were identified among the 123 lines.
The nonmetallic elements hiwve been sepa-
vated from the organ |I; naterial.

Another type of heavy-clement differen-
tation is revealed by spectrum No. 299
reproduced below, which shows primarily
cileium and magnesium, with weaker lines
ol silicon, aluminum., nitrogen, and oxygen.
Thus, the material that produced this spec-
trum wias severely depleted in iron and
sodium; it may have been similar to that of
the rare enstatite achondrite meteorites.

These  spectra reallirm  that  the
meteoroidal particles in space are not all
similar in composition, This, in turn, may
indicate that there huve been several sources
ol such particles.
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the two electronic states shown below the spectrum has been worked out with the aid of a treatment like that illustrated in
Table 10-1. The heavy arrows are drawn to call attention to the series of transitions that occur from a given v’ level to
various v/’ levels. (Courtesy of J. A. Marquisee, Case Institufe of Technology, Cleveland, Ohio.) '

1,5455 A 1,368.1 A ' et

v'=0—=v=0

e o

iRy e b

e |
- If
..
|

(b)

FIG. 10-3 Ahsorption bands due to electronic transition showing vibrational structure. (o) The absorption bond of CO ot about 1,400 A,
{Adapted from G. Herzberg, “Spectra of Diatomic Molecules,” D. Yan Nostrand Company, Inc., Princeton, N.J., 1950.) (b) The absorption
band of Iz in the visible spectral region. The indicated values of v’ are for the series of transitions that start from v/ = 0. (Courtesy of
1. A. Marquisee, Case Institute of Technology, Cleveland, Ohio.)
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HARVEY: AIR RADIATION 1N METEORS

Jh?r '
. ( |\ % [ il
TABLE 1. . Wavelength Identifications of Air Radiation in Three Meteors
- Multiplet
A Measured X Identified Number Element L, eV E eV Spectrum®
3692 3692.44 7 (6] 9.48 12.82 P -
3755 37554 3.1 N2 P 8.00 11.28 C
3806 - 38049 2,0 N, 2P .79 . 11.04 €
3942 - 3943, 5,2 N, 2P 8.39 11.52 C
3947 3947.30 3 (8] 2.11 12.23 P
3947.49 3 O 9.11 12.23 P
3947.69 3 (0] 9.1 12.23 P
3998 3998.4 4,1 N:2P 8.20 11.28 C
4099 4099.95 10 N 10.63 13.64 C.P
4110 4109.98 10 N 10.64 13.65 L.C.P
4113 4114.00 10 - N 10.64 13.65 C.P
4140 4141.8 7,3 N, 2P 8.77 11.76 G
4152 4151.46 6 N 10.29 13.26 Lq:F
4199 4200.5 6,2 N, 2P 8.58 11.52 C.p
4215 4214.73 5 N 10.29 13.21 C.P
4215.92 5 N 10.28 13.21 Cc.p
4226 4223.04 5 N 10.29 13.21 1E P
4224.74 5 N 10.29 13.21 L.C.P
4230.35 5 N 10.29 13.21 L.C.P
4369 | 4368.30 5 (e} 248 12.31 L.CP
4654 4654.23 18 0 10.69 ; 13.35 L.CP
4654.56 18 0 10.69 13.35 L.C, P
4655.36 18 (o] 10.69 13.35 L.CP
4768 4772.54 16 (0] 10.69 13.28 L
4772.89 16 (0] 10.69 13.28 L
4773.76 16 (8] 10.69 13.28 L
5020 5018.78 13 0] 10.69 13.15 P
5019.34 13 (0] 10.69 13.15 P
5020.13 13 (0] 10,69 13.15 P
5332 5328.98 12 (6] 10.69 13.01 C.P
5329.59 12 (¢] 10.69 13.01 C:P
5330.66 12 0] 10.69 13.01 C.P
5433 5435.16 1 0 10.69 12.96 Lcp
5435.76 11 0] 10.69 12.96 L.C..P
5436.83 I 0] 10.69 12,96 L.C,P
5577 5577.4 JF (0} 1.96 4.17 L.CP
5755 5755.2 12,8 N I P 7.52 9.67 L.C.P
5804 5804.3 11,7 N, 1P 1.37 9.49 L.P
5956 5854.4 10,6 N, L P 1.21 e U P
5910 5906.0 9,5 N: 1 P 7.05 ' 9.14 P
5960 5956.0 8,4 N; I P 6.89 8.86 LGP
6010 6013.6 1.3 N, 1T P 6.72 8.78 c.p
6070 6069.7 6,2 N; 1P 6.55 8.58 L.C,P
6160 6155.99 10 (0] 10.69 12.70 L.C,P
- 6156.78 10 o] 10.69 12.70 L.C.P
- 6158.19 10 0 10.69 12.70 L.C.P
6245 62529 . 11,8 N, I P 1.52 949 L.C.P
6320 63229 10,7 Nl P 7.37 932 L.C.P
6454 6453.64 9 0] 10.69 12.61 L P
6454.49 pg (e} 10.69 12.61 L. P
6456.01 9 8} 10,69 12.61 L.P
6472 . 6468.5 8.5 N, I P 1.05 8.96 C.P
6484 6482.74 21 SRl 11.71 13.62 L,C.P
6484.88 21 N - 11.71 13.62 L.C,P
6545 6544.8 7.4 N, L P 6.89 T 8.8 P
6562 6562.82 1 H 10.15 12.04 P
6623 6623.6 6.3 N: I P 6.72 8.58 C:P
6702 6704.8 52 N: I P 6.55 8.39 c.p
6728 6726.25 2 0] 92.11 10.94 P
6726.50 : 2 (6] 9.1 10.94 P
6794 6748.6 4,1 N 1P 6.37 ‘ 8.20 C, P
6870 . 6875.0 3,0 N1 P 6.20 7.99 P

*P, Perseid; C, Coma Berenecid: and L. Leonid.
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Fig. 1. Meteor spectrum 8, This spectrum of a probable Leonid meteor was recorded during the night of November
20-21, 1968. The spectrum was recorded on a f/0.83 Maksutov-Schmidt slitless spectrograph of 150-mm aperture. The
inverse dispersion of the spectrogram is 500 A/mm.

20 HARVEY: Alr RADIATION IN METEORS
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Fig. 7. Spectrum of N, first-positive band radiation from a Ny-filled Geissler tube, This spectrum was recorded on a
[/1.65 Schmidt slitless spectrograph of 140-mm aperture. The inverse dispersion of the spectrogram is 165 A/mm.

Q. =14 X |07 cm? 57! (13) I= 10PeVs!t=2X|0"erpgss™!t (17)

The corresponding production rate for NoBx, by electron  This is radiated over the spectral interval AA6000-9000, giving
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SPECTRAL-HEIGHT RELATIONS IN PERSEID METEORS
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Department of Astronomy, University of Southern California, Los An geles
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ABSTRACT

Data from the 1977 and 1978 Perseid meteor showers indicate that meteors whose spectra contain
the H and K lines ofionized calcium appear and disappear at altitudes about 6 km below those thatdo
not. This is the inverse of what the earliest spectra revealed. The changing nature of the meteoroid

sample made available by more powerful

instrumentation is responsible.

Although the Perseid meteoroids were randomly distributed in 1978, evidence is presented that in

1974 a nonrandom cluster of meteoroids
Subject heading: meteors and meteorites

L. INTRODUCTION

In the second of his landmark studies on the analysis of
meteor spectra, Millman (1935) divided the spectra then
available into two main classes, Y and Z. The former
exhibited the H and K lines of ionized calcium as their
most prominent features; the latter lacked the H and K
lines and consisted principally of iron lines.

In discussing his data, Millman first called attention to
the fact that meteors exhibiting spectra of type ¥ have
heights in excess of 80 km, whereas those with spectra of
type Z appear definitely below the 80 km level. Although
only eight meteors were involved, he felt that the correla-
tion was probably not due to chance. Two possible
explanations were suggested, First, type Z spectra may be
produced by iron meteoroids which would suffer less air
resistance per unit mass than stony objects and would be
able to penetrate the atmosphere more deeply. Millman
noted as an objection to this explanation that among the
first 14 sporadic meteor spectra, 64°%, were of type Z,
whereas only 5.4 % of meteorites with known dates of fall
are irons. The second suggested explanation was that
differences in the type or degree of the physical processes
of radiation are responsible. At the time, Millman
concluded that Maltzev's (1930) height-geocentric-
velocity relationship was probably of much greater im-
portance than compositional factors in explaining
differences in the heights of meteors. Four decades later,
the stockpile of meteor spectra is perhaps 2 orders of
magnitude greater, but the question of the relative impor-
tance of what might be called internal versus external
factors in explaining spectral variations has not been
completely resolved.

II. RECENT SPECTRAL-HEIGHT STUDIES

Halliday’s (1958) identification in meteor spectra of the
forbidden neutraj oxygen line at 15577, henceforth to be
referred to as the green line, provided a basis for addi-
tional studies of meteor heights. He found the line to be
weak or absent in the spectra of slow meteors, but even in
the spectra of a given shower, where the geocentric

317

with unusual spectral properties was observed.

velocity is constant, the strength of the green line was
variable. In a recent study of meteor heights confined to
the Perseid showers of 1977 and 1978 (Russell 1980), the
strength of the green line appeared to be significantly
related to the heights of appearance and disappearance.
Table I contains the data on the eight best spectra. The
column headings are self-explanatory except for the last
two, where the strengths of the green line and the H and K
lines are compared to the strength of the sodium D-line.
The following arbitrary scale was used: (1)not visible, (2)
discernible but much fainter than the D-line, (3) easily
visible but fainter than the D-line, (4) stronger than the
D-line outside of bursts, and (5)strongest spectral feature.
The figures indicate that the meteors in whose spectra the
green line has a strength of 4 or 5 appear and disappear at
heights averaging 9 km greater than those with weaker
green lines. The average height of appearance for the four
meteors with green lines of strength 4 or 5 is 105.3 km, in
reassuring agreement with Millman, Cook, and Hemen-
way’s (1971) image orthicon data which indicated maxi-
mum green-line activity near 106 km. Variations in
velocity can not be invoked to explain these differences as
only Perseids of constant velocity are being considered.
Although such factors as solar and geomagnetic activity,
radiant altitude, and even atmospheric tides may play a
greater or lesser role in green-line strength, the effect of
structural or compositional differences or both receives
support from two sources. First, Ceplecha (1968) has
shown that the beginning heights of meteors tend to
cluster around two or three values. Cook (1973) finds that
similar discrete levels exist for the beginning heights of
shower meteors. Both attribute this effect to composi-
tional or structural differences in the meteoroids. Second,
n 1972, two Perseid spectra were photographed on the
same 10 minute exposure (Russell 1973). The stronger
Spectrum shows no green line, whereas in the fainter
Spectrum it is prominent. It is difficult to understand how
the environmental factors could change with such
rapidity.

In an earlier paper (Russell 1963), an inverse relation-
ship was found between the maximum strengths of the
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TABLE 1

HEIGHT AND SPECTRAL DATA ON PERSEID METEORS

Height of Height of
Meteor Appearance Disappearance Strength Strength
Designation {km} (km) of 15577 of Hand K
1977A104........... 107.8 923 5 1
1977 A 106........... 98.9 81.6 15 1
1977 A 108 ........... 95.1 75.6 2 3
1978 A3la........... 107.4 844 4 2
1978 A31b........... 1050 85.1 5 1
1978 A37a........... 973 76.4 3 3
1978 A37b........ee 913 76.1 3 2
1978 A38 ............ 101.0 81.9 4 1

green line and those of the H and K lines. If this inverse
Felatl(_m and the direct height versus green-line relation
Just discussed are both valid, it follows that the strength of
the H and K lines should vary inversely with both
beginning and lerminal meteor heights. The spectra of the
eight meteors in Table 1 are shown in Figure 1. Spectra
31b, 38, and 104 all lack H and K lines and appeared at
heights above 100 km. Spectra 37a, 37b, and 108 all
contain Hand K lines and appeared below 100 km. Weak
H and K ll_nes in high-altitude meteor 31a appear only
be_cause: of its high luminosity. Low-altitude meteor 106
mlgh@ have ha_d visible Hand K lines had it been brighter.
Despite the diluting effect of 31a and 106, meteors with H
and K radiation appear and disappear about 6 km lower
than those without,

The existence of meteors with the H and K lines
occurring at lower altitudes than those without appears
to be at variance with Millman’s original finding. The
rew;lrsal of the spectral-altitude relation can be attributed
to the changing nature of the sample of meteoroids whose
spectra have_ been recorded by increasingly powerful
ltnSlrumenlauon over the years. All but one of the earliest
bYI_JC Y spectra of meteors of known altitude were of
bright, fast shower meteors in which H and K are
lr}vlzgfbly strong. It was not until the Giacobinid shower
?he HG “:j‘?‘t any spectra of shower meteors failed to show
-4 50?)]15 K lines. Harvey (1973) found that among the
il pr:ctm obtained in the NASA Langley Research

nter Faint Meteor Spectra Patrol, only 2% were of

type Y. To account for Millman’s original three low-
altitude type Z spectra, we note that two had low
geocentric velocities and may have been produced by iron
meteoroids totally lacking in calcium. The third was a
weak, poorly oriented spectrum to which Millman gave
low weight.

To explain the behavior of the Hand K lines in general,
Rajchl (1963), utilizing Baker’s (1959) theory, concluded
that ionized calcium emission appears when B, the ratio
of meteor diameter to mean free path of the emitted
molecules, is about 10, on the boundary between the
transition flow and slip flow regimes. This is a condition
that may not be met by most faint meteors before their
extinction.

1. DISTRIBUTION OF PERSEID METEORS

In 1978, meteors on the night of August 11-12 were
clearly much more numerous than on the previous and
following nights. Spectra obtained with one spectrograph
during the 3 nights, including sporadics, numbered
4-21-2. The 4"40™ of exposure time on the middle night
was divided into eight 35 minute periods. The top quarter
of Table 2 compares the number of Perseid spectra per 35
minute unit predicted by a Poisson distribution with the
number observed. The fit suggests a random distribution.

In 1974, however, the situation was significantly differ-
ent. No spectra were obtained on the night of August
10-11, but 5 and 6 were recorded on the following nights,
respectively. After the elimination of four sporadic

TABLE 2

PoissoN PROBABILITIES OF METEOROID CONCENTRATION

1978 All Perseids

Observed

dicted
1974 All Perseids Predicte

Observed

Predicted
1974 All Perseids with green
lines

Observed
Predicted

1974 All Perseids with strong

green lines and N, bands Observed

Predicted

Spectra/35 min interval

Spectra/40 min interval

Spectra/40 min interval

Spectra/40 min interval

0 1 2 3 4 5
1 2 3 0 1 1
1.0 21 22 1.5 0.8 0.3
0 1 2 3 or more

12 4 0 1

11.25 4,64 0.95 0.16 . c—
0 1 2 3 or more

15 1 0 1

13.44 316 0.37 0.03

0 1 2 3 or more

16 0 -0 1

14.249 2514 0.223 0014




meteors, the counts were 3 and 4. I the 11720™ of
observing time the last 2 nights is divided into seventeen
40 minute periods, the observed and predicted numbers
of spectra per period appear in the second quarter of
‘Table 2. The probability of obtaining three or more
Perseid spectra in any of seventeen 40 minute exposures is
0.16. In one 40 minute period it is 1:106.

However, only four of the seven Perseid spectra con-
tain green lines, and three of the four occurred in one of
the 40 minute intervals. The third quarter of Table 2
applies to these four spectra. The probability ofobtaining
three or more spectra with green lines in one 40 minute
interval is thus 1:566.

Finally, it is notable that the three spectra obtained
within one 40 minute interval (actually within 14-35
minutes) were, as shown in Figure 2, remarkably similar
in appearance. The fourth spectrum with a green line,
photographed the previous night, left the field just as the
remainder of the radiation was appearing. It could not,
therefore, be compared in other details with meteors 75,
77, and 78, which share in common the Av =3 and 4
diagonal sequences of the first positive group of the
neutral nitrogen molecule, strong green lines, but weak
atomic radiation, the last limited in general to the mag-
nesium triplet at A5176 and some D-line radiation super-
posed on the Av = 4 sequence. If only these three similar
spectra are considered, one obtains the figures in the last
quarter of Table 2. The probability of these three spectra
occurring in one 40 minute interval is 1:1214.

It may not be immediately obvious that meteors 75,77,
and 78 are really different from some of the meteors in
Figure 1. The most pronounced difference is in the ratios
of the length of the green line to the length of the nitrogen
bands immediately to the red of it. For the low-altitude
meteors 106, 108, 37a, and 37b, the average value of this
ratio is 42°,. For the high-altitude meteors 104, 31a, 31b,
and 38 it is 76%,. For meteors 75, 77, and 78 it is 1239%.
Spectral differences of this sort could, of course, result
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from unusual atmospheric conditions. It would seem
extraordinary, however, for an unusual cluster of similar
meteoroids to appear conveniently when these unusual
conditions prevailed.

The suggestion that the Earth encountered a concen-
tration of meteroids of a particular structure for 35
minutes implies that the diameter of the concentration
was nearly an order of magnitude larger than that of the
Earth. Obviously similar meteors should have been
recorded by other observers working at the same time.
Ian Halliday of the National Research Council of
Canada, Gayle Harvey of the Langley Research Center,
and Richard McCrosky of the Smithsonian Astro-
physical Observatory graciously replied that for one
reason or another none had obtained any spectral data at
or close to that time. As it would have been daylight in
Europe, no queries were directed to European observers.

I regret that for these three meteors there are no heights
available which might enhance the similarity of their
nature, although the ratios of line lengths previously
mentioned suggest even greater heights of appearance for
these meteors. It is tempting to conclude that we are
viewing here three samples {rom a particular, limited
region of the parent comet.

IV. CONCLUSIONS

Within the time and instrumental constraints of this
study:

1) Perseid meteors with strong green lines appear and
disappear about 9 km higher than those with weak or no
green lines.

2) Perseid meteors with strong green lines tend to have
weak or no H and K lines of ionized calcium.

3) Perseid meteors with H and K lines of ionized
calcium appear and disappear about 6 km lower than
those without H and K lines. .

4) Nonrandom concentrations of Perseid meteoroids
with similar spectral features may occasionally occur.
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F1G. 2.—Spectra of three Perseid meteors obtained within 35 minutes the night of 1974 August 12-13. Lines above the prints indicate the position o!
the forbidden oxygen line at 45577. Double lines show the

location of the Av = 3 and 4 diagonal sequences of the first positive group of the neutral
nitrogen molecule. All motion is downward.
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Comparison of TV Magnitudes and Visual Magnitudes of Meteors

Yoshihiko Shigeno and Masayuki Toda

The generally accepted belief is that a meteor, with a large amount of infrared rays, can be captured brighter
than it actually is by infrared-sensitive image intensifiers (I.I.) or CCD. We conducted observations of meteors using
three methodologies: 1) LI. attached with a filter that has visual magnitude equivalent to human eye spectrum
sensitivity at night vision, 2) LI. without the filter and 3) visually to determine meteor magnitudes. A total of 31
members of the astronomical club at Meiji University observed 50 meteors in Perseids, 19 meteors in Geminids as
well as 44 sporadic meteors and the results were tabulated. The results helped us understand that on average 1.1.

can capture meteors brighter than visual observation by the magnitude equivalent of 0.5 for Perseids, 1.0 for

Geminids and 0.5 for sporadic meteors.

For I.I. with a filter that has equivalent spectrum magnitude with the human eye at night vision, it turned out

that we could obtain almost the same magnitude with observation by the human eye.

We learned that a bright meteor with negative magnitude can be observed by L.I. brighter than the human eye.

From several examples, we found I.I. could capture a meteor with about -1 visual magnitude brighter by about three

magnitudes. We could probably do so because a bright meteor with negative magnitude may contain more infrared

rays and the brightness could be amplified.

1 Introduction

Magnitudes are important yardsticks to express the
mass of meteoric materials and conventionally visual
magnitude or photographic magnitude have been used
as the index (Opic, 1958; Verniani, 1967). Since a
meteor contains more infrared rays (Borovicka et al.,
1999), the generally accepted belief is that meteors can
look brighter when photographed by new observation
instruments such as I.I. or CCD with more sensitivity to
infrared rays. By obtaining precisely the difference
between conventional and new magnitudes of the same
meteors, we are able to compare the conventional and
new observation in a correct manner. However, it
appears that this comparison has not yet been
implemented in a full scale. We would like to report the

results of the comparison of I.I. and visual observations.

2 Comparison between TV Magnitudes and
Visual Magnitudes

Shigeno and Toda conducted a series of observations
to determine meteor magnitudes by both I.I. and visual
observations: one time in April and two times in August
2004. During the observations, we found a total of 21
meteors; for each meteor, its TV magnitudes were
brighter than visual magnitude by 0.2 to 2.6 magnitude
or 1.2 magnitude on average. It will be attributed to I.I.
that is also sensitive to infrared rays and capture
brighter image of meteors as they contain more infrared
rays.

We studied between TV magnitudes and visual
magnitudes (Mtv-Mv) could be changed or not by other
factors. Figure 1 shows the relation between visual
magnitude (Mv), angular velocity (Va) and velocity of
observation (VO) where the trend is not clear yet
(Shigeno and Toda, 2005).
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Figure I1- Comparison between deviation(TV magnitude - Visual magnitude)(Mtv-Mv)

and Visual magnitude(Mv), Angular velocity(Va), Observed velocity(VO).



3 Observation by I.I. with Filter for
Spectrum Magnitude Equivalent of Visual
Magnitude

The above observation method cannot determine the
correct visual magnitude. We, therefore, observed to
determine meteor magnitudes by three other methods:
1) LI. with a filter that has the same amount of
spectrum magnitude with visual magnitude at night
vision (MtvF), 2) LI. without the filter (Mtv) and 3)
visually. Magnitudes of TV meteors were obtained from
the relations between brightness, size and magnitudes
of fixed stars and corrected by angular velocity. A total
of 31 members of Meiji University's astronomical club
observed 50 meteors in Perseids, from August 11 to
August 13, 2007, 19 meteors in Geminids on December
14 of the same year and 44 sporadic meteors. The
results are shown in Table 1 as tabulations by observers
for comparison of magnitudes by LI. and visual

observation.

3.1 Comparison of Mtv with MtvF

As shown by the upper column titled "Mtv-MtvEF" of
Table 1, we obtained the following data: -0.5 magnitude
for Perseids, -1.0 magnitude for Geminids and -0.5
magnitude for sporadic meteors. These results suggest
that without filter observation shows brighter than the
observation with filter by 0.5 to 1.0 magnitude. In the
table, SD indicates the dispersion of data as standard
deviation and the results ranged from +/-0.6 to 0.7
magnitude, meaning they were the variation of data but

not errors in the average values.

3.2 Comparison of Mv with MtvF

The middle column of Table 1 shows the tabulated
results by observers. Negative values mean that the
observers had estimated brighter than actual while
positive values mean they had estimated darker. We
learned that some observers had estimated brighter by
almost one magnitude while others had estimated
darker. However, from the total results of all the
observers, i.e., "All Visual Observation Data" in the
bottom column of Table 1, it turned out that the
difference between the average of Mv and the average of
MtvF was somewhere between 0.0 to 0.2 magnitude and
the difference was minimal. That means MtvF in this
report was almost meant to be Mv. However, we also
learned data variation by the observers was rather

large at +/-0.8 to 0.9 magnitude.

3.3 A bright meteor with negative magnitude

A bright meteor with negative magnitude can be
caught by L.I. brighter than visual observation. Figure 2
is a list of typical examples of meteors with negative
magnitudes. They are classified as approximately -1
magnitude by visual observation whereas 1) MtvF are
brighter by approximately 1 magnitude and 2) Mtv are
further brighter by approximately 2 magnitudes.

We assume the reason for the above item 1 is due to
the fact that the magnitude by TV observation is to
determine the brightest spot instantaneously while
visual observation determines averaged magnitude.

Therefore, as a brighter meteor may likely generate

more light instantaneously, TV observation may
estimate the magnitude brighter than visual
observation.

For the reason noted in item 2, we assume that
brighter meteors with negative magnitude may be
caught brighter as they may contain a large amount of

infrared rays.

Figure 2- Bright meteors with negative magnitude.
Upper photo. : No.P40 Aug.12,2007 17:07:50(UT) Per.
Upper left : Mtv = -4.0mag.

Upper right : MtvF =-1.7mag.

Myv =-0.5mag.

Lower photo. : No.G05 Dec.14,2007 13:42:39(UT) Gem.
Lower left : Mtv = -4.8mag.

Lower right : MtvF = -2.2mag.

Mv =-1.4mag.

Filter : SCHOTT BG18 2mm (Filter that has equivalent
spectrum magnitude with the human eye at night
vision (400nm-600nm).)

Spectrum sensitivity of I.I. : 350nm-900nm.



Table 1- Tabulations by observers for comparison of magnitudes by I.I. and visual observation.
Mtv-MtvF : Comparison of magnitudes by without a filter(Mtv) and with a filter(MtvF).
Mv-MtvF : Comparison of magnitudes by Visual magnitude(Mv) and with a filter(MtvF).

Perseids Geminids Sporadic
Observer" No. ‘ Mean | SD | Observer ‘ No. ‘ Mean ‘ SD Obsewer‘ No. ‘ Mean ‘ SD
Mtv-MtvF| 50 | =05 | 0.7 [Mtv-MtvF| 19| -10] 06 [Mtv-MtvF| 44| -05]| 06
Mv—-MtvF Mv—MtvF Mv—MtvF

Hosogi 2|1 -14 0.4 Sato 3| -09 1.2 |Sakaguchi 1| -1.4 0.0
Yamashita 21 -09 0.3 | Hirota 2| -0.7 0.6 | Saito.Y 3] -1.1 0.4
Katabami 2| -0.7 0.1 | Oshima 3| -05 1.6 | Saito.S 1] -1.1 0.0
Kitagawa 1| -0.5 0.0 Arai 1|-04 0.0 | Katabami 2(1-10 0.5
Okuyama 31 -03 0.9 | Kanaya 41 -03 0.7 | Yamada 2| -06 0.8
Sakaguchi 21 -03 0.7 |Yamashita 2| -02 0.3 lino 2| -06 1.3

Shinsha 2| -03 0.4 | Ogawa.H 2| -02 0.3 Sato 81| -05 0.9
Kinoshita 13| -0.3 0.7 Yuriya 2| -02 1.0 | Okuyama 2| -04 0.1

Yuriya 18 | -0.3 0.6 |Matsuzaki 1 0.0 0.0 | Kitamura 5| -04 05

Sato 91| -0.2 0.6 | Kinoshita 6 00| 09| Kanaya 12| -03| 07
Wakasa 10| -0.2 0.6 | Wakasa 4 0.2 1.1 | Kinoshita 91 -02 1.0
Ogawa.Y 21| -0.2 0.8 | Ogawa.Y 9 0.3 0.8 | Kato.T 71 -01 0.7
Matsuzaki 3| -02 1.4 | Shigeno 3 0.5 0.6 | Ogawa.Y 15| —0.1 0.9
Doi 3| -0.2 0.3 | Matsuda 5 0.5 0.7 | Matsuda 41 -0.1 0.7
Kanaya 71 -01 0.7 | Kitamura 5 0.7 0.9 | Oshima 71 -01 0.7
Saito.Y 3| -01 0.5 | Yamada 2 0.8 0.8 | Yuriya 21 | 0.1 0.5
Noto 4| -01 1.7 ] Saite.Y 3 1.7 0.7 |Matsuzaki 41 00 0.5
Arai 200 00| 08 Arai 11 0.1 0.6
lino 8 0.0 1.0 Wakasa 9 0.1 0.6

Kato. T 2 0.1 1.0 Yamashita 3 0.2 0.3

Oshima 8| 0.1 0.7 Doi 3| 03| 06

Kato.S 2 0.2 0.9 Kurosaki 4 0.4 04
Kurosaki 3 0.5 0.4 Toda 9 0.5 0.9

Hirota 3 0.6 1.0 Kato.S 1 0.6 0.0

Toda 13| 0.7 1.1 Hirota 2| 06| 02

Shigeno 17 1.0 0.7 Hosogi 2 0.9 0.8

Kitamura 2 1.2 0.3 Shigeno 17 0.9 0.6
Kitagawa 1 1.6 0.0
All Visual| 183 | 0.0 | 09 |All Visual| 57| 02| 09 |All Visual| 167 00| 08




4 Conclusion

Previous infrared spectrum observation of Perseids
had discovered several molecular bands such as
630-670nm and 730-780nm nitrogen molecular bands
as well as many kinds of atomic luminescent lines such
as 777nm oxygen atomic luminescent lines (Ebizuka,
N., personal communication). We learned that these
infrared rays make meteors look brighter by 0.5 to 1.0
magnitude; especially meteors of negative magnitudes
can make the difference of brightness larger.
Meanwhile, we also learned that I.I. with the filter that
has the same amount of spectrum magnitude with
visual magnitude at night vision can observe meteors
with almost identical magnitude of visual observation.

We would like to express our gratitude for valuable
advice from Mr. Mitsuru Terada for the relations
between magnitude and mass of meteors and from Mr.

Noboru Ebizuka for the infrared spectrum.

5 Supplementary Notes

We studied the relation between magnitudes and
image sizes of fixed stars in order to precisely obtain
magnitudes of meteors. Figure 3 shows the results of
observations from two types of often-used objective
lenses: 85mm/F1.2 and 24mm/F1.4, respectively. The
relation between magnitudes of fixed stars darker than
0 magnitude and the size of image can be approximated
into an almost straight-line. However, we learned that
fixed stars brighter than 0 magnitude may make the
image size bigger rapidly. This would be because of the
characteristics of I.I. Then, we chose straight-line
approximation at an area darker than 0 magnitude
while we used quadratic functional approximation at

another area brighter than 0 magnitude in Figure 3 by
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Figure 3 - Comparison between magnitude of star and

size of image.

straight-line and curved line. Figure 3 shows the case of
observation without the filter and the approximation is
different in the case of observation with the filter.
Figure 4 shows a fire ball discovered at TV
in 2001

data was

observation of a Leonids meteor swarm
2003).
recomputed by the methodologies in this report and the

(Shigeno et al., The original
magnitude turned out to be Mtv: -7.6. Unfortunately,
however, we did not observe this meteor visually. That
particular day happened to be a meteor storm occasion
and a large number of people were observing but there
was no report of such a bright meteor. The actual
magnitude of visual observation of the meteor is
assumed to be about -4 as there is a difference of
approximately 3.5 magnitudes between Mv and Mtv as

shown in Figure 2.

Figure 4 - The figure on the left shows the TV
observation equipment. The device with the Image
Intensifier (Delft High Tech XX1470 etc.). The figure on
the right shows an example of a double station TV
meteor. ID: MSSJBZ on Nov 18 2001 at 18:19:34 (UT).
TV magnitude (Mtv) = -7.6.
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No | H localtime Wavelength(hm) amag |a q e p peri node incl stream
1(20184E5H |M20180523 022840 |84,106,121,127,144 -1.31| 5417| 1.003]| 0.815| 12.613]| 168.509| 61.325| 45.832|spo
..... 2[2018% 77 |M20180718.015903 |91,104,113,134,148______ | -3.88] -0.085] 0.949] 12.113] _ 0.000] 201.753] 114819] 166.073]spo___
3 M20180729 211540 111,180,140
4 M20180731 223326 (70,91,103,112,129,134,141,145,149 -3.21( 3.336| 0.950| 0.715 6.094| 147.834| 128.051| 110.910|J5 Per
_5|2018%8A |M20180801.033809_ (180 | -1o1] 1.842] 0087 0953 _2501] 150.911] 308.253 25.168]J5 sdA _
..... 6 M20180803 021629 | 137,152
3 M20180809 221038 131,146 Io47| 1427] 0777 0.310] | 1.196| 269.231| 136.653| 28.574|spo
..... g M20180810010821 [128 1030 0641] 0.167| 0740| 0514| 344.729] 136,769 45331[spo__
) M20180810.031427 [106,119.124139 17023 "0537] 0.060| 0.889|  0.394| 350429| 136.856| 42.796|sp0 .
10 M20180810033741 |125,30 T 005 0555| 0.096| 0828| 0413 0.270] 136.871| 25.981|spo
11 M20180810 035102 |131 - 0.76| 0.613] 0.209| 0.659| 0.480| 357.341| 136.880| 17.291|spo
12 M20180810234622_|108.127,139 | ~2.09] 28.125| 0962| _0.966] 149.214| 153.771] 137.677] 113.273]J5 Per _
BE M20180811041718 [129,144 [ "047] 0562| 0.108] 0807 0421| 1.390| 137.657| 89.520[sp0
| 14 M20180813 040111 {100,109,125,130,138,000 -1.90( 1.145| 0.857| 0.251 1.225| 103.497| 139.767| 104.789|J5 Per
15 M20180813 215801 (126 0.67| 1.553| 0.713| 0.541 1.937| 261.049| 140.484| 23.244|spo
16 M20180817 203658 |108,125,130,137,144 | ~-193| 7.070/ 0.905| 0.872| 18.808| 140.586| 144.275| 114.776|J5 Per
17 M20180819.030951 |102 -0.69| 2.447| 1.011| 0.587 3.830( 183.524| 145.498| 26.459|spo
18 M20180820 001819 |85,107,127,141 0.08] 2.400| 0.221| 0.908 3.719( 309.984| 146.344| 14.563|spo
| 19]2018% 98 |m20180907 200958 | | - I I
| 20| M20180918 221248 -2.39( -8.125| 0.814| 1.100 0.000| 230.434| 175.324| 135.322|spo
21 M20180927 224833 1.29| 2.248| 0.978| 0.565 3.372| 21.126 4153 1.738]|spo
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M20180731 223326 Perseids

20180731_223326 J5_Per (29.7, 54.3) vo 52.6 evr 23.3 amag -2.7 (139.180, 34.938)H 93.3 --> (139.071, 2

20180731_223326 (UNIFIED_3) 15_Per rt(30.9, 54.3) vg 55.9 vs 38.5 a 3.3 q 0.950 e 0.715 peri 147.8 node 128.1|



M20180801_033809 South. Delta Aquariids

20180801_033809 J5_sdA (342.9, -15.0) vo 39.4 evr 34.8 amag -1.3 (139.597, 34.784)H 93.8 --> (139.65¢

20180801_033808 (UNIFIED_4) 15_sdA rt(341.9, -16.0) vg 38.4 vs 35.6 a 1.8 q 0.087 e 0.953 peri 150.9 node 304
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Fig.8. Classification of meteor spectra. The ternary graph of the
Mg I (2), Na I (1), and Fe I (15) multiplet relative intensities. Every
group of meteoroids is represented with a different symbol.
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HOME SAMPLES STAR ANALYSER ADAPTER INTRO VIDEO HOW STORE LINKS DOWNLQ

The Star Analyser 100 grating screws
onto your camera nose or filter wheel

Our Star Analyser 100 (SA-100) grating is designed specifically for amateur astronomical spectroscopy.
It can be mounted on your telescope just like any other 1.25” filter. It's is easy to use, and works with
most cameras. Capturing the spectrum of a star is easy! Use our grating, a DSLR or small telescope, and
our award-winning software.

SA-200(%200AK/mm®MD T L —XREIHFHEF T

1.254 2 F I ILA—RTE>TWWTHREAICCOA AT IZR LIAATERY FHonET
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219K JL https://store.fieldtestedsystems.com/collections/astronomical-spectroscopy
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Relativa sanaitivity
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Figure 1 — Relative spectral sensitivity of CCD chip Sony ICX
673AKA.

Calibration of the emission line intensity (y-axis) was
performed using a diagram of relative sensitivity CCD
Sony ICX 673AKA at a wavelength between 3500 and
9000 A. For identification of the emission wavelengths of
the individual elements revised tables were used (Moore.
1972).
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Fig. 1. Sensitivity of the spectral equipment (the S-VHS-C camera and
the Mullard XX1332 image intensifier and lens) that we used for our
observations. This calibration curve was obtained by measuring stellar
spectra. The relative spectral intensity has been normalized to unity at
5500 A. The dip at 7600 A is due to O, atmospheric absorption.
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Figure 1: The spectral sensitivity of the AMOS-Spec system. The spectral response curve
was determined by measuring the spectrum of Jupiter, and is normalized to unity at 480

nimnm.
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2E NHASHELLES

« EHAS KNI 01 CMOS
« KB_EZE100km
e |MX225 SONY CMOS A A—4— 3.75x3.75um 1/3type
e f=8mmF1.2,720p
« JL—F2% 200K /mm
 FOV 30x20deg.

o FEZEHAS KN9_02 CCD
. fEHIE B £ ZE100km
e ICX672 SONY CCD A A—4— 5.0x7.4um 1/3type
e f=6mm F0.95, 720i
- JL—F2% 300K/mm
 FOV 40x30deg.
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