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2. Model Calculations

Meteorite fall phenomena in the terrestrial atmo-
sphere have already been extensively studied so far (e.g.,
Bronshten 1983). We now, apply a single particle moFleI
to the entry of a larger cometary nucleus into the Jovian
atmosphere, because of a lack of knowledge concerning
such extraterrestrial meteorite phenomena. When an en-
tering nucleus does not fragment into pieces, the two-
dimensional momentum equations of the nucleus within
the atmosphere in the planetocentric coordinates on the
orbital plane are

du Cp —2/3._—1/3 T 1
— = —A ) Vu—p—, (1)
PP e B o

d?} CD —2/3 —1/3 u 2
— s A Vo — L=, { }
dt 2 P T P " r3 3

where, u and v are the velocity components in the z and
y directions respectively, r is the distance from the center
of the planet. Since we assume spherical geometry for the
planet, we can take x to arbitrary direction. V is the ab-
solute value of the velocity, m is the mass of the cometary
nucleus and g is the gravity constant of Jupiter. Cp is
the drag coefficient and A is a nondimensional shape fac-
tor. We assumed 1.2 for Cp and 2.0 for A. py, is the
density of the nucleus. We assumed 1.0 g cm™3 for p,,.

p is the atmospheric density. If we consider an isothermal |

atmosphere, the atmospheric density is expressed by

£ = poexp(—h/H), (3)

where 4 is the height from a reference level where the
density is py. We set the reference level to 1 bar. H is
the scale height of the atmosphere and is expressed by
= RT/m,g, where R is the universal gas constant, T'
is the atmospheric temperature, M, is the mean molecu-
lar weight of the Jovian atmosphere, and g is the accel-
eration of gravity. We assumed the temperature of the
isothermal atmosphere to be 120 K, which corresponds
to the cloud-top temperature. If the comet cannot reach
10 bar or the 300 K level, this profile provides a good
approximation,

The nucleus penetrating info the atmosphere abrades
its surface by collisions with atmospheric molecules while
losing its original mass. The mass loss rate is

i s —A.S‘pvs,

dt 2 (4)

where S is the cross section of the nucleus, A is the heat-
transfer coefficient and ¢ is the heat of vaporization, or
ablation. Neither A nor ¢ have yet been determined ac-
curately; we therefore parameterized o = A/Cp( as the
ablation parameter and assumed 5.0 x 10~8 g2 -2 for
the value of ¢. This is a typical value for a somewhat
fragile meteorite.

The mass-loss rate and brightness of the bolide are
related as (Bronshten 1983),

dn__ 2,

dl T2

(5)

Brightness [0 mags]

Brightness [0 mags]

T2 |z >UT
R GRS T —

where [ is the brightness and T is the luminous efficiency.
We assumed that + = 5.4 x 106 ¢ mag kg™' m=2 &2 ac
cording to Cook and Duxbury (1981). The 0 mag denotes
the brightness of a 0 magnitude star, They estimated
the mass of the first fireball observed at the night side
of Jupiter by the Voyager 1’s camera, while assumig this
efficiency. The brightness used here has been normalized
to a brightness at a 100 km distance.

We solved the above set of the equations numerically
using a Runge-Kutta-Gill scheme, We started the calcu-
lation with the initia) height of a nucleus being 500 km
above the reference pressure level, and having an initial
velocity of 60 km ™!, Although a larger entry zenith
angle would cause a lower brightness maximum, the re-
duction is found to be small within 30 degrees in our
calculations, which are not presented here; the predicted
entry zenith angle is small. We therefore take a zenith
angle of 0 degrees for this first-order estimate,
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Refurbished Hubhle Takes Aim at Comet Shoemaker-Levy 9

(BALTIMORE, MD) An early target for the recently repaired Hubble Space Telescope was Periodic Comet Shoemaker-
Levy 9, the celebrated train of objects that will crash into Jupiter in mid-July (January issue, page 40). Twenty of its nuclei
appear in this mosaic of images from Hubble’s new Wide Field and Planetary Camera taken between January 24th and 27th.
The total width is 2% arc minutes, about 605,000 kilometers at the comet’s distance. The individual nuclei, none brighter
than magnitude 24, have distinct dust tails pushed outward by the Sun’s radiation pressure. More material fills the gaps be-
tween them. Inset: In this close-up the two brightest nuclei appear just 1% arc seconds apart (about 5,000 km as projected).
Courtesy Harold A. Weaver and T. E. Smith (Space Telescope Science Institute) and NASA.
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1994 June 18

To: International Jupiter Watch Atmospheres Team,
World Astronomy Day #2 Participants, and Comet Collision Enthusiasts

From: Glenn Orton, [JW Atmospheres Team Chair

Predicted Impact Parameters for Fragments of P/Shoemaker-Levy 0

-P.W. Chodas, D.K. Yeomans and Z. Sekanina (JPL/Caltech)
P.D. Nicholson (Cornell)

Predictions as of 1994 June 12
Date of last astrometric data in these solutions: 1994 June 8

The predictions for all fragments except 02 are based on independent orbit
solutions; the orbit reference identifier is now given. The orbit solution
for fragment (2 was obtained by applying a disruption model to the orbit
for Q1, and using astrometric measurements of 02 relative to QL.

Except for fragment (2, uncertainties in the impact parameters are given
immediately below the predicted values. These uncertainties are 1-sigma
values obtained from Monte Carlo analyses; we have made an effort to make
them realistic: they are not formal uncertainty values. NOTE: To obtain a
95% confidence level, one should use a +/- 2 sigma window around the
predicted values.

The predictions for fragments E, G, H K, L Q B S and W are the most
accurate, as these have the best-known orbits; frasments T, U, and V have
the most poorly-determined orbits, (especially U). The uncertainties for
fragment (2 have not heen quantified, but are probably comparable to those
for fragment P2

The dynamical model used for these predictions includes perturbations due to
the Sun, planets, Galilean satellites and the oblateness of Jupiter. The
planetary ephemeris used was DE245.

Frag- Impact Jovicentric Merid. Angle
ment  Date/Time  Lat. long. Angle E-J-F Orbit
July (UT)

- ——wah

A=21 16 19:50 -43.12 173 63.57 99.37 ALl 201t 344 106+ 76+
22 2 13 L .83 11 3 2 1

Satellite Longitudes
at lmpact (deg)
(deg) (deg) (deg) (deg) Ref. fmal Ilo Eur Gany

17 02:46 -43.16 65 63.00 80.75 B12 S0+ 42+ 136+ 41+
20 L2612 .97 .74 10 3 1 1

G=19 17 DB:50 -43.15 212 64.33 98.81 €8  172¢ 76+ 153+ 09+
20 L4012 .99 .14 10 3 1 1

IsT
D=18 17 11:11 -43.11 10 6260 90,34 D10 304 [1i3+] 171 108+

2] .28 14 115 .87 12 3 2 1

E=17 17 15:17 -40.66 157 6602 97.52 26 67+ 148+ 188 117+
14 098 il 44 7 2 1 0

F=16 18 00:16 -43.49 124 6J.58 09.25 F17 3160 224 225 136+
18 811 .85 .63 9 3 1 1

G=15 18 07:06 -43.68 27 66.65 O07.04 G26 198t 287 256 151+
13 08 8 .91 .18 7 2 1 0

H=14 18 19:35 ~-43.77 102 6708 96.71 H24 109t 28+ 306 176
13 .08 8 .54 .39 7 2 1 0

K=12 10 10:26 -43.87 280 G67.87 96.12 K25 286 153+ zu:r
13 0B 8 .54 .39 72z Lo

Jul. 19

L=11 10 22:34 -43.94 350 G8.63 95.56 L[26 286 255 60+ 232

Tul. 17T 20N 1™ 4+
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o8 8 .5 . . T 2 1
N=1 200 10:09  -44.30 B0 E7.10 9657 N13 0 28O 355 111+ 957 - ™ %

2 15 13 104 .74 3 2 1 Jul. 20 g™ £20m
P2=Bb 20 14:50 -44.57 235 65.84 07.40 P12 G5+ 36+ 191+ 257

Z1 L1312 .06 .60 11 1 ! 1
@=Th 0 1940 4430 43 510 95 14 W6 TS 151 oM

Q1= 7a 20 20:07 -44.00 50 G9.52 9480 Q28 220 70+ 153+ 278
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12 078 .50 .35 fi 2 1 0

N=6 21 05:47 -44.18 49 69,05 9456 R21 151 161 193 208
17 L0010 L6 .48 9 2 1 L

§=5 21 15:301 -44.21 46 70.63 9408 §13 A8+ 245 234 318
14 g9 .55 L 30 1 2 1 il

T=14 21 18:28 -45.23 152 67,91 05.80 T 173t 260 246 325
a1 .21 28 1. 6 1. 16 2 fi k| 1

U=13 21 22:52 -44.69 309 70.30 94.24 U9 J06 06 264 34
b8 L2841 L4 LT2 3 10 1 2 .

V=2 22 D54 -44.38 131 67.88 9598 V9 97+ 349 285 D44
28 Jamon 1,38 .09 14 4 2 1

W=1 22 0821 -44.24 202 70.09 93,80 W26 231 26+ 01 354
17 L1010 67 AT q 2 1 1

Satellite Codes: impact is wisible from satellite

satellite is occulted by Jupiter at impact

satellite is eclipsed but not occulted at impact

satellite is in transit across Jupiter

e =T

Notes:

1. Fragments J=11 and M=10 are omitted because they have faded from view.
Fragments P=8 and 0=7 each consist of multiple components. The March' 34
HST image shows that Pl=8a has almost completely faded away (so it too is
omitted from the Table), and that P2=8b has split. We do not as yet
have sufficient data to obtain independent predictions for the two
cempanents of P2=8h.

2. The impact date/time is the time the impact would be seen at the Earth
{if the limb of Jupiter were not in the way); the date is the day in
July 1994; the time is given as bours and minutes of Universal Time.
The impact time uncertainty is a l-sigma value in minutes.

3. The impact latitude is Jovicentric {(latitude measured at the center of
Jupiter}; the Jovigraphic latitudes are about 1. 84 deg more nemative.

4. The impact longitude is System I[1, measured westwards on the planet. The
large uncertainty in impact longltudes is due to Jupiter's fast rotation.

5. The meridian angle is the Jovicentric longitude of impact measured from
the midnight meridian towards the morning terminator. This relative
longitude is known much more accurately than the absolute longitude.

At the latitude of the impacts, the Earth limb is at meridian angle 76 deg
and the terminator is at meridian angle B7 deg.

6. Angle E-J-F is the Farth-Jupiter-Fragment angle at impact; values greater
than 90 deg indicate a farside impact. All impacts will be just en the
farside as viewed from Earth; later impacts will be closer to the limb.
The probability that any fragment will impact on the near side as viewed
from the Earth is < 0.DI%.

7. Satellite data are given for Amalthea, lo, Furopa, and Ganymede. Callisto
is omitted, as it is too distant to act as a useful reflector of the
impact flashes, and it has no occultations or eclipses during the impacts.
Metis, Adrastea and Thebe are also omitted, due to the expected faintness
of any flash reflections from them The satellite longitudes are measured
east from superior conjunction (the anti-farth direction). Longitude
uncertainties listed as "0" are simply < 0.3 deg.

8. According to these predictions, the only impact certain to occur during a
satellite eclipse is K=12 with Europa eclipsed.
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Predicted Brightness Variation of the Collision of Periodic
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Abstract

We calculated the brightness variations of the impact flash of Periodic comet Shoemaker-Levy 9 (1993¢)
with Jupiter expected at the end of 1994 July, using a terrestrial bolide model. The calculations showed that
the original cometary mass is lost in Jupiter’s atmosphere and that the maximum brightness is —10 magni-
tude for a 3 x 10'3 kg nucleus, if we see the crash directly from the Earth. We also estimated the reflected
light from the Galilean satellite Io, since the predicted crash will take place on the far side of Jupiter, and
showed that it is likely to be observable, if the satellite has a favorable position and the mass of the nucleus
is greater than 10'! kg. High-speed photometric observations of the satellite at the time of the impact will
be able to explore the large cometary impact phenomena in the planetary atmosphere.

Key words: Comets: Individual (Shoemaker-Levy 9 1993e) — Meteors and meteorites — Photometry

of Galilean satellites — Planets: individual (Jupiter)

1. Introduction

Periodic comet Shoemaker-Levy 9 (1993e) was discov-
ered by C. S. Shoemaker, E. M. Shoemaker, and D. H.
Levy in 1993 March (Marsden 1993a). Subsequent obser-
vations have revealed that the comet comprises a string
of several comets aspect (Chapman 1993). Orbital cal-
culations suggest that the comet is temporarily trapped
around Jupiter’s gravitational field; this aspect is thought
to be the consequence of a tidal disruption during a close
encounter within two Jovian radii in 1992 July (Nakano
and Marsden 1993; Marsden 1993b; Carusi 1993). Fur-
ther, the orbital calculations predict that the comet is on
a course of impact with Jupiter, which will take place at
around 1994 July 20.

Unfortunately, the predicted collision will take place
on the far side of Jupiter, so that we will not be able
to see the collision event directly. However, since the
impact energy is extremely large, we may be able to see
the event as reflected light from Galilean satellites, if one
of the satellites has at a favorable position at the time of
collision. Because of having a tidally fragmented nuclei,
the impact will occur several times over a few days. We
will have a chance to observe the impact several times.

We will show here the brightness variation during the
entry of the comet into Jupiter’s atmosphere using a ter-
restrial bolide model.

2. Model Calculations

Meteorite fall phenomena in the terrestrial atmo-
sphere have already been extensively studied so far (e.g.
Bronshten 1983). We now, apply a single particle model
to the entry of a larger cometary nucleus into the Jovian
atmosphere, because of a lack of knowledge concerning
such extraterrestrial meteorite phenomena. When an en-
tering nucleus does not fragment into pieces, the two-
dimensional momentum equations of the nucleus within
the atmosphere in the planetocentric coordinates on the
orbital plane are

du _Cp, _a2/3 13 z

o = g APm M pVu— pe, (1)
dv _ Cp I i (O [ Y :
St e o 2) ¢

where, u and v are the velocity components in the z and
y directions respectively, r is the distance from the center
of the planet. Since we assume spherical geometry for the
planet, we can take x to arbitrary direction. V is the ab-
solute value of the velocity, m is the mass of the cometary
nucleus and p is the gravity constant of Jupiter. Cp is
the drag coefficient and A is a nondimensional shape fac-
tor. We assumed 1.2 for Cp and 2.0 for A. py, is the
density of the nucleus. We assumed 1.0 g cm~2 for pp,.
p is the atmospheric density. If we consider an isothermal
atmosphere, the atmospheric density is expressed by
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Fig. 1. Brightness variation of the bolide at a distance of 100 km for a 3 x 10'? kg nucleus impact into Jupiter’s atmosphere.
The brightness is scaled by the number of 0 photographic magnitude stars. The origin of the duration time is arbitrary.

(3)

where h is the height from a reference level where the
density is pp. We set the reference level to 1 bar. H is
the scale height of the atmosphere and is expressed by
H = RT/m,g, where R is the universal gas constant, T
is the atmospheric temperature, m, is the mean molecu-
lar weight of the Jovian atmosphere, and g is the accel-
eration of gravity. We assumed the temperature of the
isothermal atmosphere to be 120 K, which corresponds
to the cloud-top temperature. If the comet cannot reach
10 bar or the 300 K level, this profile provides a good
approximation,

The nucleus penetrating into the atmosphere abrades
its surface by collisions with atmospheric molecules while
losing its original mass. The mass loss rate is

dm A 3

TR T
where S is the cross section of the nucleus, A is the heat-
transfer coefficient and ¢ is the heat of vaporization, or
ablation. Neither A nor ¢ have yet been determined ac-
curately; we therefore parameterized o = A/Cp( as the
ablation parameter and assumed 5.0 x 1078 g2 m~? for
the value of ¢. This is a typical value for a somewhat
fragile meteorite.

The mass-loss rate and brightness of the bolide are
related as (Bronshten 1983),

dm 2
it BB f
dt TV2

p = poexp(—h/H),

(4)

(5)

where [ is the brightness and 7 is the luminous efficiency.
We assumed that 7 = 5.4 x 10° 0 mag kg™" m~2 s% ac-
cording to Cook and Duxbury (1981). The 0 mag denotes
the brightness of a 0 magnitude star. They estimated
the mass of the first fireball observed at the night side
of Jupiter by the Voyager 1's camera, while assumig this
efficiency. The brightness used here has been normalized
to a brightness at a 100 km distance.

We solved the above set of the equations numerically
using a Runge-Kutta-Gill scheme. We started the calcu-
lation with the initial height of a nucleus being 500 km
above the reference pressure level, and having an initial
velocity of 60 km s™!. Although a larger entry zenith
angle would cause a lower brightness maximum, the re-
duction is found to be small within 30 degrees in our
calculations, which are not presented here; the predicted
entry zenith angle is small. We therefore take a zenith
angle of 0 degrees for this first-order estimate.

3. Results and Discussions

The calculated brightness variation for a nucleus hav-
ing a mass of 3 x 10'® kg is shown in figure 1. This
mass value was estimated from a CCD observation by
Watanabe et al. (1993) as their lower limit. The cal-
culated energy release is concentrated almost within
1 s, and all of the original mass vanished in the atmo-
sphere. The maximum brightness reached —42.8 magni-
tudes when we could see it at a distance of 100 km. If
the impact occurs at the visible side of Jupiter, we will be
able to see its maximum brightness of —10 magnitudes
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Fig. 3. Reflected brightness variations of the impact through the Galilean satellite Io. The calculated mass range is the same

as in figure 2. The origin of the duration time is arbitrary.

mospheric entry, the peak brightness level will shift to a
lower pressure level than the above mentioned calcula-
tions, and will thus reduce the duration time. A model
used to describe such fragmentation should be developed
in the future. High-speed photometric observations will
be able to discriminate the occurrence of fragmentation.
In any case, our estimates are based on the uncertainty
of the luminous efficiency. If the masses of the nucleus
are accurately estimated by other methods, the luminous
efficiency for the large impact could be well determined
from photometric observations.

We thank Dr. Watanabe of the National Astronomical
Observatory for recommendation to submit this work and
for his helpful comments.
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from the Earth. Walker (1986) and Zahnle (1992) sug-
gested that the effect of shocked gas in front of a larger
impactor causes temperature regulation by thermal ion-
ization. Since this effect is not taken into account in our
model, our estimates provide upper limits.

Figure 2 illustrates the brightness variations for several
masses. The horizontal axis of the figure is the pressure
coordinate. The calculated mass range is 10*! to 10 kg.
These calculations indicate that a nucleus with a greater
mass can penetrate deeper into the atmosphere and that
no nucleus can survive in the calculated mass range. As
a consequence, considerable amount of cometary mass
will spread out around the peak brightness level. These
brightness peaks are located bellow a pressure level of
1 bar. In Jupiter’s atmosphere the upper-most cloud is
thought to be made of ammonia ice. The vertical extent
of the cloud is 0.7 to 0.3 bar in pressure scale (Atreya
and Romani 1985). These brightness peaks, therefore,
will occur under a cloud layer having an optical thick-
ness of 5 or more in the visible wavelengths, and may
be obscured by this cloud. However, the impact should
be an intense explosion rather than a large fireball, so
that the impact should blow off or evaporate the cloud
particles. Although cloud obscuration can be neglected,
Rayleigh scattering by the atmospheric gas will still re-
mains. The optical thickness 7 by the Rayleigh scatter-
ing for Jupiter’s hydrogen atmosphere is

7R = 0.0009 A™*(1 + 0.015 A"?)AP, (6)

where )\ is the wavelength in pm and AP is the layer
thickness in bars (Sato and Hansen 1979). For a wave-

length of 0.5 pm, even for a pressure thickness of 10 bar,
the optical depth yields only 0.15. We therefore neglected
this effect in our calculations at the present time.

The collision of the comet with Jupiter is predicted to
take place at the far side of the planet. Although we
cannot directly observe the crash, we have a chance to
observe the event through reflected light from Galilean
satellites. The most inner Galilean satellite, To, is the
best candidate for such a reflector. ITo is orbiting around
Jupiter at 5.9 Jovian radii. From this distance the im-
pact flash will be seen to be comparable or brighter than
the sunlight at Jupiter's orbit in brightness. Therefore,
the impact flash through the satellite will be observable
from the Earth. Figure 3 shows relative flareups of Io in
magnitude for nuclei with various mass. In this estimate,
we neglected any phase effect of the satellite, since at this
time we have no accurate impact time, and thus cannot
predict the position of the satellite during the impact.
The calculated brightness variations are determined from
the total incident flux, which includes both the flash from
the impact and the solar flux. If no obscuration by Jo-
vian clouds will exist, we may be able to see a flash of
the satellite caused by the impact of a cometary nucleus
greater than 10'! kg, even using a small telescope. If
the nucleus is greater than 102 kg, the flash can provide
sufficient luminosity for spectral observation, which can
be used to determine what molecules, atoms, or ions are
emitting the light.

These calculations are based on a single-particle model.
If a nucleus is fragmented in the atmosphere, which is
likely to be the case, or is tidally disrupted before at-
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Discovery of Impact Spot in 1690 on Jupiter
Isshi TABE
665-8 Shimo-Tsuruma, Yamato-City,Kanagawa 242
JAPAN
Abstract

The formation of scars caused by the collision of
Comet Shoemaker-Levy 9 on surface of Jupiter was
a marvelous event exactly. Although many candid-
taes of past impact scars have been still ambiguous,
we discover the record of reliable spot in a drawing
of J.D.Cassini in 1690. We refer to the circumstance
of this discovery and how this spot has stronger relia-
vility than other known candidates.
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Summary
20104 8 A 20 A 18h 22m12s ARE@mTOME CM2=159° HIFREE+21.1° 2B,
HEBE 1370 BROBEE 6.220.1% IR 4300-4400K impactor DK E & 4.2mlATF

Introduction

AREIZREREZET 2B RIE, 197T9F 3 H, 19944 7 H, 20094 7 A, 201046 Az
Bl =7z, (Cook and Duxbury 1981, Sanchez-Lavega et al 2010, Hammel et al. 2010,
Hues et al. 2010)
SL-9 # &\ T impactor 23 23¥) - TU 22y,

Observation and reduction
H AT Amateur Astronomer 3 4 2 R IZ L Zh,
201048 A 20 H 18h22m12s (UT)

Observer Location Telescope Camera
Masayuki Tachikawa Kumamoto City, Kumamoto 15cm Refractoe Phillips Toucam?2
Kazuo Aoki Setagaya, Tokyo 22.5cm Schmidt-Cassegrain |Phillips Toucam2
Masayuki Ishimaru Toyama-city, Toyama 12.5¢m Refractor DFK21AUO04

SADEBNE+HENTHREDH -7, FFKLEABETOOM SN L Tuve & A3,
ELFRERRE AEAR-HEES 880k m REA—EIL 730km H#HEA-EIL 240km

2010 Aug.20 18h22m12s(UT)
CM1=336.7 CM2=165.2

Masayuki Tachikawa, Kumamoto

This image shows south is up.

NRITT o7 ARENDO CAERRE
TORXLEEETE S,

3ODERADOFTHE S SN DB M. Tachikawa O {8 % HIE
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RGB ®#REEA S 4300-4400K

Result

(Huesoet al 2010 DF5R EAF L b—ET 5,)

moo : EREOEE V. EHZEHEE (64km/s)
t : FENEhE="5.4X10"-6 [Omag kg-1 m-2 s3]
LkEROMEXHE (100k m, Omag DOfF4L)

R

g
=1?./ {Pgdt_

64k m/ s i Cook and Duxbury (1981) X9

FURHRGETHELME (1, 4, 5)

BEM (SL-9, 2009 FEDEBDH DA X2 k)

75

# E#% (100k
HRBE WAE m) HE EE(RE) Ei% Reference W&
1| 197943 A58 Voyager 1 -125% 11kg 2g/cm”3 0.2m  |Cook and Duxbury 1981 MER
2( 19944 7819 0 0AO <1000m | Watanabe et al 1993 SL-9
3200978 238 - - - 2.5g/cm”3 | 200-500m Orton et al 2011 RO H
4 201056 A58 Go and Wesley -252% 5x%10°5~2% 1076 kg| 2g/cm”™3 | 8~13m Hueso et al 2010 KR
5 201048 A 208 | ), HFR.HA 224 % 7.6 X 1074kg 2g/cm”3 4.2m This work KER

5 DAy hE, HERDLSDONADHAL X 6.2%#% (1FH) =—224%#H (100km) (K

E-#ERkDOREE 4.1006AU)
RGB gz L 2 IREOHEE 4400K

Reference

1=8.50% 108 [0Omag ]

(< L< % Hueso02010 ¢ [ L)

Cook A.F. and Duxbury T.G. 1981 JGR 86,8815-8817

Hammel H.B. and 11 authers 2010 ApJ 715 L.150-1.154
Hueso R. and 16 authers 2010 ApJ 721 1.129-1.133
Orton G.S. and 26authers 2011 Icaus 211 587-602
Sanchez-Lavega A. and 15 authers 2010 ApJ 715 L155-L159
Watanabe J., Hirota Y., and Abe,M 1994 PASJ 46, L.1-1L4



