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DEC)U? OF LIGHT FROM A METEOR TRAIN®
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ABSTRACT

The rate of decay of light from a persistent meteor train was measured using a microdensitometer,
The decay followed an exponential law at all measured points, and these points were located between

heights of 84 and 93 km above the earth’s surface. At 93 km the light decayed at arate of 0.2 magnitudes.

; econd: at 84 & rate was 1.2, Evidence of radiation from atomic oxygen was found in the early

art of the decay curve. A comparison of normal and long enduring trains shows that the rate of decay
Is controlled by the upper atmosphere and is not dependent on the properties of the meteor that pro-
duced the train,

f I. INTRODUCTION

The train, or glowing column of light, produced by a meteor gradually decreases in
brightness with time. The exact form of the decay curve has been uncertain, although
Trowbridge (1907) suggested that luminosity is propartional to (1 + K0~ where K is
the decay constant. He based this suggestion on observations made on the phospho-
rescent glows in discharge tubes, but its applicability to the phenomena of meteor
trains has not been proven. Liller and Whipple (1954) studied the decay of a meteor
train photographed with a Baker Super-Schmidt camera, using visual estimates of the
intensity of the photographed image. Their measurements did not allow a determination
of the decay law, and the expression of Trowbridge was assumed to hold. Determina-
tions of the decay constant, K, showed that the rate of decay was a function of the
height of the meteor train in the atmosphere. ﬂlﬁﬂighg:a_qﬁiess—thaﬂ-g—iaud_gr&mt.mm

: 2cay-was rapid. At intermediate heights, between 88 and-98 km the decay
was slow, and the meteor train persisted for a long peried of time, a f&:{; %o

An experimental determination of the shape of the decay curve would help solve the
problem of the origin of the light from meteor trajns. We have therefore selected a
meteor train from the records obtained with the Baker Super-Schmidt cameras of the
Harvard Meteor Project in New Mexico and have subjected it to an accurate photo-
metric analysis.

II. OBSERVATIONS

The selected meteor train was photographed on film number ST 5488 at the Dona
Ana Station on the night of June 29-30, 1954, at 6"29= U.T. The data pertaining to the
meteor that produced the train are as follows: Correct radiant (1950), R.A. = 250°1 I
Dec. = 54232, Beginning height 108.0 km above sea level, end height 82.7 km. Absolute
visual magnitude —1 4. Geocentric velocity, corrected for atmospheric deceleration,
26.18 km sec*. The orbital elements of the meteor are given in Table 1. The film show-
ing the train has been reproduced by Cook and Hughes (1957) and by Watson (1956).

Seven exposures of the train were made on the same film with the camera tilted 0.3
degrees in declination between exposures. Table 2 gives the beginning and end times of
each exposure, measured from an arbitrary epoch =0 when the visual observer
started the train-camera mechanism. This action occurred probably 1.5 sec after the

* The work was supported jointly by the United States Army, Navy, and Air Force under contract
with the Massachusetts Institute of Technology.

t Now at the University of Michigan.
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tude than 1.09. When the width, xo, has been found, the integrated magnilude m* can
be computed from equation (3). The values of integrated magnitude are given in
parentheses in Table 3, where again a constant arbitrary zero has been chosen,

1V. DISCUSSION

In Figure 1 we have plotted the peak magnitude of the train against time, The mag-
nitude of the first image has been taken as zero for each height. It can be seen that the
magnitude varies linearly with time, and therefore the intensity decreases exponentially
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F1. 1.—Decay law, magnitude versus time

with time. The initial decrease of about 0.3 magnitude in the first second of time is prob-
ably due to the light of atomic oxygen at 3577 A (Halliday 1958). We deduce that the
intensity, 1, of the train is described by the expression

= [, g=0.018 at
I=1ILe Af 0]

where /o is the intensity of the train at the time ¢ = 0, and the decay constant, g, is
measured in magnitudes per second. A similar law may be derived for the variation of
total brightness as given in Table 3, but a greater uncertainty occurs in the determina-
tion of total magnitude because it involves the determination of the width of the image.
The scatter of individual points is somewhat greater than shown in Figure 1.

The decay constant, g, has been determined for three heights from the slope of the
lines in Figure 1. The value of a as a function of height is shown in Figure 2. These
results can be compared with the original data of Liller and Whipple (1954) because the
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relation 7 = Io/(1 + K#)* resembles an cxponential for long enduring trains, It can he
shown that ¢ = 5.02 ! [logio (1 + K1)}, where 4, is the duration of the train. The
carlier values have been converted and included on Figure 2. There is good agreement
between the values of Liller and Whipple and those determined by accurate photometry
in the present paper. The decay constant is strongly dependent on height, decreasing to
a minimum value of 0.2 mag/sec at a height of 92 km.

The train studied here, St 5488, appears to have a duration that is longer than average.
With a visual magnitude of — 1.4 and a velocity of 26 km/sec, we would expect the dura-
Lion to be less than 1 sec, according to the visual results of Millman and Robins (1935)
and Millman (1950). Yet the train produced a photographic image in the last exposure
which ended approximately 18 sec after the formation of the train. We estimate that
the train would have remained visible for more than 10 sec, and the duration of the train
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Fie. 2.—Variation of decay constant with height

is thercfore 10 times greater than the normal value. On the other hand, the train of
Liller and Whipple (1954) was a normal duration train. It is interesting to note that,
although the present train was of unusually long duration, the decay rate was exactly
the same as that of a normal duration train. We may infer that the decay of light from
both normal and long enduring trains follows an cxponential law and that the rate of
decay is a well-defined function of height.
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Sodium emission
in persistent meteor trains

Using theoretical estimates of the rate
coefficient of the association of Na
with O;, Kolb and Elgin' have shown
that the catalytic effect of sodium in
releasing the store of recombination
energy of free atmospheric atomic
oxygen is more powerful than was
previously  assumed’. Drawing on
evidence from measured Na D-line in-
tensities, Kolb and Elgin estimate a
branching ratio for the production of
excited Na(*P) from NaO reduction of
f~ 0.05, which, using the model pre-
viously suggested® implies that at
90 km  sufficient  photon  emission
occurs for an enduring train to result
from a metcor of magnitude about —6.
It is instructive to relate this estimate
lo observation. 1t is known that the
trains of small duration show an initial
emiission decay at 90 km of about’” 0.2
mag s”' and since the radiation prob-
ably results from the interaction of
jonic constituents of the train so that
the reaction rate varies inversely as the
meteor column cross-sectional area and
hence inversely as time, a decay of
5 mag would be expected between
about 1s and 100s. We may infer that
any train luminosity having a duration
r 2 100s must be due to a catalytic
(sodium) mechanism. In Olivier's cata-
logue* 557, of trains (r> 10s) were
produced by high wvelocity shower
meteors, Perseids. Orionids and Leo-
nids. In  the duration-magnitude
characteristics given for 3700 trains
by Millman® the average meteor mag-
nitude corresponding to a duration of
1005 is in the range —7.5 to —5 for
velocities 60-70 km s7'. From the ex-
tensive surveys of Hoffmeister (see ref.
4) and Olivier, one visual meteor in 780
results in & train of duration ¢+ > 10s.
Using ref. 5 the difference in magni-
tudes between meteors responsible for
trains of 10s and '100s duration is 2.5
implying a corresponding  incident
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meteor flux ratio® of 27:1. Since the
mean visual meteor rate® to a single
observer is 9.7 h™' the observed occur-
rence frequency of trains r> 100s
is 4.6 X 10°*h™". In comparison the
cumulative flux of meteors having mag-
nitudes brighter than —6 for an in-
dividual observer is, using Hughes®
3.1x107*h™". Though there are un-
certainties in [Os] and f and variations
in Na abundance, the sodium cycle
process is strongly supporied as a
source of persistent meteor train
luminosity. This conclusion may be
viewed in the light of the review of
train characteristics by Hughes'.
Hughes considered evidence for the
mechanisms responsible for persistent
meteor train emission and on the basis
of visual observations®* concluded that

the evidence supported a mechanig
that is closely associaied with the leve)
of meteoric ionization rather than With
meteoroid mass or meteor lum.‘nosi“.
1t is of importance tao emphasise lh;i
based on the observations’" the cop.
clusion of Hughes is inappropriate, The
results of Lindblad® for Perseid Meleq,
trans are confined to very short dury
tions, r: for only 2% of the traing
was 1> 3s while for 90, < 1esi
indicating that the observed light war
associated with the meteor wake emjs.
sion and in particular the well knowp
015577 A feature. Indeed the data of
Lindblad permit the determination of
the effective lifetime = ({decay cop.
stant) of the emitting species. It js
straightforward to show that (he
gradient of train  duration-metegs
magnitude plot is given by —7(log
10)/1.51 and using Lindblad (Fig
11B) 7=0.21=0.05s. In comparison,
the radiative lifetime of the Q]
('D;<'Sp) transition is 0.74s. How-
ever the great majority of observed
trains were in the 90-100km heigh
interval (Lindblad, Fig. 18) where de-
activation of the O{'S)) statc most
effectively occurs with O and O.. Using
recommended quenching coefficients
and known atmospheric concentrations

1 48,/ 2000 s
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the quenching rate at 95km is ~ 2.957
resulting in an effective emission life-
time of 0.23s. Plavec® does not state
the durations of trains in his analysis.
We note. however, that according to
Plavec (a), the trains disappeared in a
few seconds. (b), there was concern
with the effects of observer reaction
times on duration measurements (c),
50¢, of Perseid meteors vielded trains
in contrast to the much Jower propor-
tion at lower meteor velocities. The
results indeed coincide with what I8
now known about the green line emis
sion (the 5,577 A feature was not iden-
tified until 1958). It is quite clear that
the observations of Lindblad and
Plavec do not refer te the true rart
enduring train phenomenon.

W. J. BAGGALEY

Phvsics Department,
University of Canterbury,
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g BriGut meteors often leave a faint,
! Persistent luminosity along the visual
Path after they have passed. For most

Meteors this Juminous train lasts for a

* Yery short time. but for some it may

observable for seconds, minutes or

fven an hour. This persistent train is

| Dot formed along the whole path of the

Blowing meteor nucleus but only along

that part of the path which falls within

' @ specific height region of the atmaos-

Phere usually between 85 and % km

above the Earth, The colour of the
% the train decavs, the observed
SPectrum consisting of very f rig
dines Trains_illuminated by sunlight
EVeT =d or orang inly due
% the reflection of sunlight from the
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Persistent
meteor trains

from David W. Hughes

fine dust particles left behind the ablat-
ing meteoroid. Trains expand laterally
at a rate of about 1.6 m s™!, so a train
which persists for an hour is about 11
km across at the end of this time.
Train luminosity, 1, decays according
to the formula I=(a+br)"" where a
and b are constants and ¢ is the time.

Many meteor trains appear double
after a time, the train gradually becom-
ing a tube of Juminous matter which,

viewed from the side, appears like a
double line of light. This effect may
be caused by the dying out of the
luminosity along the train axis or by
the expanding edge of the train having
a greater luminosity. If the luminosity
was distributed evenly throughout the
cylindrical train it would appear
brightest in the centre when viewed
from the side. During their lifetime the
trains are blown about by the prevail-
ing winds in the mesopause region of
the atmosphere and in the first quarter
of the twentieth centurv meteor train
movement was the only indicator of the
winds and turbulence in the upper
atmosphere.
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Survey of Observations of Meteor Trails

Pereir M. Minayan®
Nalional Rescarch Counell, Ottawa, Canada

The general nature of the luminoesity and jonization appearviag slong the lrajeclories of

is of observations miaube with oplical cameras mind radar

bright meteors is discussed on the ba
i are desevibed: 1) o shaep lnminoesity peak
ation radintion of nloms in

equipment,  Six distio ategories of ph
that maoves with the meteoraid and consists chiefly of the low exeit
and fiest jonization stages, 2) & moving=ball type of vadar target that also travels at

s along the highest portion of the trajectory, 3) a

CRIEL

v of the meleoroid and appes
ing wake with duration measured in small fractions of a second and with a faint lnminos-
ity arising from the lowest excitation levels in a number.of comimon atoms, 4) a metastable
train lnsting o second or two along the upper purt of the trajectory, the lnminosity arvising from
a forbidden green line of neatral oxygen, 5) a persistent teain that may remain visible for

tral sodivm and magnesium in its

weral minutes and that probably includes the lines of ne
luminosity, and 6) an enduring radar echo that usts for o considerably longer period than the
optical persistent train and that, like it, is maodified eontinually by the wind structure of the

NRC 7392

upper a tmosphere,

Meteor Speetra

As noted previously, ronghly 1079 of the original kinetic
energy of the meteoroid is converted to visible Lght during
its passage through the atmosphere, and, as a very general
approximation, about the same amount of energy appears
as ionization.  Most of the remainder of the energy is con-
verted into heat,  Observationnl evidence indicates that the
meteoroid loses kinetie energy by o continuous ablation of
mass rather than by any appreciable decrense in velogity.?
Deceleration beeomes significant only in the case of very
slow fireballs that penetriate to abnormally low heights, A
simplificd physieal pieture of a bright meteor assumes the
direct collision hetween the meteoroid and the air moleeules,
with the resulting ablation of the solid mass. Through
subsequent eollisions between the air and the moving eloud
of meteor plus air particles, atoms and molecules are excited
into energy levels from which radiation is emitted.  This
regults in the eharaeteristic atomic line spectrum of bright
meteors along with a few moleculur bands, in partienlar those
of nitrogen.®  The following neutral atoms have heen identi-
fied reliably in the light of mieteors: hydrogen, nitrogen,
oxygen, sodium, magnesium, aluminum, silieon, ealeium,
chromium, manganese, iron, and nickel. The (first-staze
ionization of the following atoms also appears: nitrogen,
oxygen, magnesium, silicon, ealeiom, iron, and strontium.
In general, the excitation is low, most of the multiplets wdenti-
fied having exeitations of the upper level betaween 2 and 8 ev,

Veloeity in the atmosphere is the parnmeter that has by
far the greatest effeet on the general charneter of @ bright
meteor spectrum. . The fust meteors have speetra that con-
tain strong lines of a number of singly ionized eloments,
ealcium, magnesium, and silicon heing particularly prominent
here,  Meteors of medinm speed have a few donized lines,
but they are not outstanding,  The Light of slow meteors s
[rom neatral atoms and moleeules only. The slowest objects
may penetrate the atmosphere to heights where o gas eap

builis up in front of the ablating meteoroid.®  Significant
blackbody temperature radiation may be present, but the
mujor parl of the light still comes from individual atoms and
moleeules. &

Meteor Wakes

Of partienlar interest here is the aetual shape and form of
the meteor as it moves down ils trajectory. The visible
object is not the meteoroid itself but the glowing cloud of
atoms and molecules which surrounds it.  The angular
motion aeross the sky is so rapid that in most cases the per-
sistenee of vision will mask the true form of the meteor head,
even if it is large enough to be resolved by the eye.  Analysis
by ordinary photography also suffers on account of the rapid
angular motion and various cffeets of photographic diffusion
common with bright images. A very useful device for study-
ing the nature of the moving meteor image is an oceulting
shutter installed on the camera either in front of the lens or
immediately in front of the emulsion.  TFigure 1 illustrates
rualitatively the nature of typical meteor tracks as photo-
graphed with a rotating shutter,  As one moves farther away
from an ideal moving point source, the effects of the shutter
acerlations beeome progressively less evident,

IMigure 2 is an example of direct meteor photopraphy with
a rotating shutter before the lens. It will be seen at once
that here much the greatest pereentage of the light emitted
wis coneentrated in a relatively small image, but that some
trailing luminosity was detected.  In an early study of such
photographs,® it was noted that in most cases of bright
meteors there was evidencee of o wake extending from 20 to 200
m behind the metear head, and that in general the integrated
luminosity of the wake was considerably less than o the
luminosity of the head. More recently MeCrosky'* has
studied o mueh larger amount of data on faint meteors
photographed with the Super-Schmidt eameras,®? and he
finels that n wake is detected more frequently in the low-
veloeity objeets, e eoneludes that it is produeed by frag-
mentation of the meteoroid into particles approximately 104
rin weight. It is probable that the wake found in the case
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Fig. 2 Photograph of two meteors, seeured in Ottawa with a stationary camera and a shutter rolaling in front of the lens

on August 12-13, 1949,
(200,000 fps) in the atmosphere.

The meteors, with direetion of motion from upper left to lower right, had veloeities of 60 km/sec
Shutter breaks were at 0.1-see intervals, the closed period being equal to the open period.

Evidence of a wake and the beginning of a persistent train appears in several of the shutter breaks for the brighter meteor,

whiel was of visual magnitude —4 with a train seen in moonlight for 11 see and an enduring radar echo lasting 112 sec.

The short ares of cireles were produced by the stars trailing about the north eclestial pole during the 25-min exposure.
(Deminion Observatory photograph)

of very bright fast meteors consists essentially of trailing
atoms and molecules, whereas the wake for the fainter and
slower meteors involves both fragmented particles and the
atoms and molecules that are the end product of much of the
meteoroid mass.

Figure 3 illustrates the spectrum of a typieal wake of the
first type. The excitation is very low, the intercombination
lines of magnesium and calcium and the lowest-level iron
multiplets appearing with unusual strength. The upper
energy levels of the brighter multiplets identified range from
2.5 to 3.1 v. This low execitation is typical of much lower
velocities than the 60 km/sec (200,000 fps) at which this
meteor was moving. Apparently the particles in the wake
have been decelerated strongly.

Metastable Trains

In Tig. 4 is shown a different phenomenon, a radiation in
the green region of the spectrum (55774) which has a duration
of the order of 1 or 2 sce and hence exhibits no evidence of
shutter breaks. Since this is produced by a transition from
a metastable energy level of the neutral oxygen atom, the
term metastable train is suggested as applicable. It first was
identified by Halliday® and is found in the spectra of the high-
velocity meteors, appearing in general along the upper portion
of the trajectory. The metastable train occurs normally in

the height range 115 to 95 km (370,000 to 300,000 {t), whereas
the remainder of the visual luminosity is roughly 10 km lower.
The oxygen green-line radiation generally is present in all
auroral displays. [ts presence in meteor spectra has not yet
been explained fully on theoretical grounds.

Persistent Trains

A luminosity of still longer duration frequently is observed
in the case of bright meteors, and this has been termed the
persistent lrain (Fig. 5). In cxtreme cases it may last for
appreciable fractions of an hour, although maximum dura-
tions of a few minutes are more usual. It is correlated with
meteor brightness and velocity, being more prominent as
these parameters assume higher values,™ Visual observations
and dircet photographs of persistent trains show a rapid
diffusion and a distortion into various twisted forms by the
wind shears present in the upper atmosphere.®! Liller and
Whipple have made a quantitative study of these motions in
the case of a few photographic records.!? Tawkins and
Howard® find an exponential deeay law for the luminosity of
a persistent train, with a minimum decay constant in a height
range 88 to 96 km (290,000 to 310,000 ft). Unfortunately, no
photograph of the speetrum of a persistent train yet has been
seeured, and so there is some doubt as to the nature of this
long-enduring luminosity. Observations made in the nine-
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Fig. 3 Meteor spectrum (World List no. 123) photlo-
graphed in August 1952 with a diffraction gealing and a ro-
tating shutter occulting the lens 12 times/sec.  The closed
period of Lhe shutter was twice Lthe length of Lhe open per-
iod. The meteor was moving at 60 km/see (200,000 fps),
so that the shutter interval represents 5 ki along the
meteor Lrajectory. The meleor was observed visually, stel-
lar magnitude —4 with a 30-see train. The lines of both
neutral and once-ionized atoms appear in this spectrum,
as well as the bunds of the nitrogen molecule. The exeita-
tion in the meteor head builds up as the meteor hrightens,
whereas the spectrum of the wake shows a much lower
excitation than that of the head. Note, lor example,
presence of Nal in wake but complete absence of Sill,
{(Dominien Observatory photograph)

teenth century with visual spectroscopes suggest that the
yellow line of sodium and a line close to the green line of
magnesium are present in the persistent train.'  Since the
same observers correetly identified these two features in the
meteor head, it is quite possible that sedium and magnesium
contribute to the train luminosity. The spectrum of the

brighter meteor in Fig. 2 (not reproduced here) shows a

[eature very close to the violet line of magnesium as the
strongest contributor to the train spectrum,' and this does
not have the characteristics of the wake as it appears to be of
longer duration.

The relations among the various forms of luminosity left
along the meteor trajectory are illustrated qualitatively in
g, 6. Immediately following the passage of the meteor
head the position of an intensity maximum will be influenced
chiefly by the position of a burst of light in the meteor head.
This is presumably a position where the meteoroid fragmented
or ablated at an accelerated rate® Later on the position of
maximum of the metastable train will be governed by the
physical conditions in the upper atmosphere which are favor-
able to its appearance. Finally, the persistent train will be
at maximum strength somewhere near the height where the
decay constant is a minimum.!® ® 1In the case of faint slow
meteors, fragmentation is the primary factor in determining
the form of the light curve® " The luminosity may deeay
rapidly over the upper portion of the trajectory, but the wake
of fragmented particles will extend long enough to fill in the
shutter breaks on rotating shutter photographs completely.
This produces the effect called terminal blending, ns noted by
MeCrosky in his study of wakes. !t
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SEbED CoIl MgI Nal
Fig. 4 Meteor spectrum (World List no. 433) photo-
graphed in August 1961 with a diffraction grating and a vo-
tating shutter oceulting the lens 6 times/see.  The closed
period of the shutier was equal in length to the open
period. The meteor was moving down, as here presented,
at a veloeity of 60 km/sec (200,000 fps). It was observed
visually, stellar magnitude —2 with a 10-sce train, Apart
from some of the strong low-temperature lines of both
nentral and once-ionized atoms, the most striking feature
is that of the metastable train whose luminosity in the
green is produced by the neutral oxygen atom. Sinee this
Iuminosity lasts for 1 or 2 see, the train shows no shutter
breaks. Itstartsata height of 118 km (390,000 ft) and ends
at 103 kim (340,000 ), whereas the remuinder of the
photographic track goes from 109 to 86 km (360,000 1o
280,000 ft). In addition Lo the meteor spectrum, several
strong stellar spectra appear on this exposure. The stel-
lar spectrum at the top contains the Balmer lines of hydro-
zen in absorption.

Fig. 5 [PPersistent Lrain of a bright meteor, April 26, 1956,
photographed with a time exposure lasting from 135 to 195
see after the meteor had appeared. This photograph
clearly demo: tes the differential drift of various por-
tions of the train, an eflcet of upper atmosphere winds.
There is also an indication of the break-up of the train inte
elobules, which could be thermal bubbles resulting from
the heating of the air column by the meteor. (Photo by
C. F. Capen Jr.: courlesy of Sky and Telescope Magasine)

Meteor Radar Echoes

The observational evidenee resulting from a radio study of
meteors now s examined.  High-power radar records of
bright meteors show enduring echoes that last considerably
longer than the visual trains for the corresponding objects
(I, 7).m020 These echoes are produced by the clouds of
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3 Nave Length [rn] A0 00
EGEN %A 3
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mERIER AL

96Leal01 97Lea01 97Leo02 | 97Lec03 Multiplets *
Line No. | TIS-V TIS-V TIS-IR TIS-V TIS-V TIS-IR |identification
1 2 3 1 1 1 1 1
1 (386.1)
2 (437.2)
3 4573  (456.5) (457.0) | 4584 (452) |Mgi1(1}
4 (465.7)
5 (481.0)
6 5174 5185 5186 514 5190 51904 519 Mg i(2)
7 {538.1)
B 568,8 Na I (6)
9 588,6 587.8 587.8 582 (594.9) 5800 {5897 [Nal(1)
10 (601.4)
11 (606.5)
12 (623.2)
13 660
() BEDHLLVER
[ ] BFAaItER i
# C.EMoore,”A Multiplst Table of Astrophysical Interest” NSRDS-NBS-40,(1972)
HeeEEEME S — 12




M55
Ee6RMEMEEIT—

0 &6

TB#RETE 77 ik

swEMNSETTIEEEE
(IB48 (360K / nmbH D)
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Line Mo. |Wave Length | Length |Element Muttiplat | Speatra Comment |dentification
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456,16 454 AnmITH S,
457111 Mgl (1) (o] [@]
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= C.EMoore,”A Multiplet Table of Astraphysical Interest” NSRDS-NBS-40,(1972)

FooEREME LIS —

=2 MRS

T RS 20 T 5
96Lec] 97Leabl 97Lec02[97Lec03 98Leo02 |Multiplets +1 |
Line No.| TIS-¥ TIS-V  TIS-IR | TIS-V | TIS-V  TIS-IR [TIS-V #2) |
1 2 3 1 1 1 1 1 1 |
1 | (386.1) (ass) |Mglfer |
| | (395) (AL |
(423) |Cal(2)?
2 | (437.2)
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10| (G014
| (608.5)
| 12 | (6232
L 660
) ERhLLYER

1998/04/19



EeeMEiiZ2ME LIS —

MSE- 084

A WE i R« | KEEE  *l
FEAFFE ~m s ~ EE ~t# | ~#+5
IHLE—F | REOEMIALE— | FEOEHIRLY— | REOEHIFLY— | REQOEFIFLE—
BiEA h =X L | @RIk IEERRZ {H22i- & HEIERE 14 oBHEE ERTHEICLS
B A4 ERE fib 1 7L
FhfehE Fe, Na, Mg, Ca, i 5§ 0(3F) Mg, Na 5§ (Fe0, 02, Na, Mg0) 7%
*2
{0 BEst HATI)

*1
*a

ZEH, EEE, ﬁﬁi:.h%EC’J.J;-‘";\':iﬁL?‘:u LisdiaT—@Cit, MESERO LI ZENSAThShiT TR,

H[EE,

HeoEREMEEI—

- LLEREFICETARKKICEHRMEED RELARINE, 7
|, & EFAEITHEYRETE,

e
=

ZDERE
- EEATEREOREWRICUY), BEOERE
- ARIMEEDOHTH
— EEXETILOEENRE
- BHOES S BEEL
HooEEMBELIS—

1998/04/19



L o0

& % I Baai 74
_98Leo2 MMC : T=4h13m53s+2s | ssleczTcC-01 © % ' Tc=16s(13s—19s)

' GBLeod TCO-05 Tc=76s(73s-79s) | 98leo2 TCC-02 Tc=31s(28s—-34s)

i

98LeoZ TCC-04 Tc=615(58s—64s) | 98Leoz T0C-03 ; Tc=46s(435—49s)




MSST-084

98Leo2 TIS-V-01 . iﬁgﬁx /\07 i\)l/ Te = 20s (13s-2Ts)

— "
. L
*

‘ ... . ‘.- _- fi . ) ‘-' X i ::.:;"::-—.-._{,H_:..

' T o ! el [ |
‘ gl lllll‘l.ll!llll‘illl|||;[‘||]ii
Zero order ©  Wavelength [nm] 400 500 600

98Leo2 TIS-V-02 _ : Tc = 35s (28s-42s)

| | oo
, _ b e
Zero order © - Wavelength'[nm] 400 500 600

98Leo? TIS-V-03 i Tc = 50s (43s-57s)

| . inbinbain |
Zero order ) wavelength [nmj }00 500 600



St e

Zeroordsr 0 Wavelength [nml - 400 F00S i h007 T o0, B00i < Koos ooy

Tci = 32s (28s=36s)

L L

Zero ordem . Mavelength [n] 400 500 600 700, . BOD - 900- ' 71000

TERLE

|| I | | ._ | | \ ._ | | | IBLH Il

600, =700




&

- Zero order

= 80s (43s-57s)

Zerp ofder s W '.:_Wai_'\'.re !_\_e'rzzgt"h'_' [nm} 300

BLE0PATIS:UV=037 80s (/3s-87s)




..... . - B e

JR774)L(1)

TIS-V 01 FEJ74)L — H|_gh—| ‘
........ LUW i
150 |
=
Q 100
|
50 | -
0 |
| | n
_50 ..... — R SE— N N — it L - g ] - — | S e e e
0 500 1000 1500 2000 2500 : 3000 3500

E8om BB I — 8

980 ~§SH



DN

250

200

150

100

50

TIS-V 02 o774 JL

= e

500

1000

1500 2000

E8oEE BB IS —

2500

3000

3500

986 -5k



<< L LMERRBEICES REROSRBN. KEWEL IS —@RE>>
BTES Wi GEATFRRASEEEAY BmEETERE RICHEE I

(e-mail: avell@pub.mtk.nao.ac.ip)
< B a3

WA Ay b OLER S S R MO RIRETIT AV R EOBETTT

%
<R
(e ]

Observation using Grism. 11

Mg[I}@383nm, Ca[II]8393nm?, Mg[II]R448nm, semi-forbidden of Mg?([I]@460nm,

Mg(I]@518nm, Ma[I]B@56%nm, Na[I]@58%nm, CalI]@6l0nm, Fe[I]@&870nm,
FelIlGeB4inm, N[I]@744nm

| Observation using Grating ! 14

Mg [I]@383nm, CalIT]@393nm, FelIle400nm, Cr[IT]@402Znm, Cr([II]E427nm,
Mg[II]R448nm, semi-forbidden of Mg[I]?@460nm, Fe[I]2489nm, Fe[II]@502nm,
Mgl[Il@51i8nm, Fel[I]@554nm, NalI]@56%9nm, Ma(I]@589nm, Ca[I]@610mm?

(783 4 7 =X 4]

AFERIZ. B E TR, E0OHEMAATRRA TS S, F7o, BEIZKmEE
VIGEARSERE T ATEEL L, T L D EFEE TIZ Na[I]@559,590nm AMARD AATR
S S, J0FLEL B EHE TIE, Na[I]@569,590nm DM E L D REEED
N[I]? HHlELEDHE LD THd, &) bihkEEoEIZ, Na/ETF BT 5S
EH B, FlAE, ESEEEPTH S N2 i, A 20008 THElEIC
Tt 5, BELT. REENCEHLO A HN XL ? S, STHEHEL ZOM
FhEEALEF—FIHEEI 4wy, REPEELVWIPHEEEZROTERELT
W oh N THhE, £/, SELF+ > RAFEHLIDTHEIMCFTS TR
T+ EEETHD,

<HEE >

HEHEEE, HEVRATLHIIEETZ2ENL ) LT FTATDETHE, J i
FHBERS M TPERBARET - & - G FAHEESATRELTL2EZFTALL
LTv5, BHAMEIE, BEN~100knfRREETH 247, MEBREROELWHE LN
ODAHZ I LI D TIEFHE ST vy,

FLRIFED ALY FLERFIATEA SEGEER L L TRO L S LEEAZET SN
%0

(L) A~y P LERRATEZIELTSIZ8H 2 WSRO B HEEEH DT w

(2) 22y FLCERISEE ORI+

—ARICHIREOHETREE IR, BREOE P (EIKFEL T 5, B
HELEVWHRIISHLIVHERRITEEINS AL, [L LERERE
(Leonids) | &, fTHRIEREAT60kn/s ZHET IR I W ER THESE L Mo
BRI HE L TIEEICE Yy, [LLERER| X, BRETHD
Tempel-Tuttle B OIIE T DEYFICE > TRERLHBA TR LWERT
Hh, 199 E2HIZFIBENFAERLTvA, BIZSHOIIEHRZEFLHETITO
BT T 2 — 2 (1M 0 2100~ T/ »#*FEshTEh. M2
FEOETEE CMT AMEE IRV SIS HARFES LS,

FEA2DEBIE, 7)) X LGHRBETLFF v b - T— ) LEGHEFDIDD
TR ETHED SEECDH A FE A AT L X2 HAGEDELL AT LANS
LA, MAMEBHEIISEE S AFLALHRICERLEIT., MEESEHLT
LEbAav s—104EEIE. 7 X458 GEARIEIFET) T#EHT S,
EOFLLL ok SO S, HHRAESLTLE S O THSEYFTRETHL TS

Shinsuke Abe A
i

National Astronomical Observatory of Japan

| #e%H 1 1998

AEMCEFTS (wiLFF& il - 7—1) L5k AT 5. 2o
PSR FUE, CCDP AT BRI — R E % s TS 0 AL 5 — TR AT e
It s T B, O, REAKOIRIE (5L . 579 (ccp) FHETE LA
HATE ) R LGRELHE L TvAb,

R e i ]

#H AT I HIECVO4L
(cepF » 7% blue sensitive F w FUI4E{R. UL F o ifED A ElI S AT L)
L&y 2 A50mmf 1.4 K

(5 sfest i

F) A s GEEF O ET)
MCFTS (wFFrrii . 77— Z500eF)

[H7— 51

i1 188 (J5ST)
HESZHLER C @A TS - T EEEREIFT (9h 13m 56s, 35d 56 N, 1340m)
{138% 29.00,35° 56.0')

Start End Exp. Instruments
(1) 04:14:05 - 04:14:25 20 sec. Grism
(2) 04:14:45 - 04:15:05 20 sec. Grism
{3) 04:16:11 - 04:16:31 20 sec. No-Filter
{4) 04:16:58 - 04:17:18 20 sec. No-Filter
{5) 04:17:52 - 04:18:52 &0 sac. MCFTS
(6) D4:19:14 - D4:21:14 120 sec. MCFTS
{7) 04:21:36 - 04:24:56 200 sec. MCFTS

7R 3 DEERIFEEE @ -0.2F)
(#3v 2 ORISR © 1.0 58 L B)

e FRODSEFEESS]  04h 13m 54.44s — 0O4h 13m 54.58s
Jesgsi— A RBFEZ D 04h 13m 54.51s (FEFE 0.02%%)

duratien train {E. 0.5 FFr—F104r OIS, short duration train [
SERICHEEG T L. LITLIEFRRZ RS T RSN, TORIIE.
BRI 448 555.7mm Sk A L O TH LA D> TS [ Halliday 1958;
Millman ot al. 1971 o /KEMEOBINE. JEE 24 FS & FTHIATTRER F0
& ZOHEHFIELE L. ARFEORRIZDWVTIZTEA EFH S IL TV RV, e
EOEEIZ, HEDHEST T RAEETO R AOENS D BEETHDHe

%r Review of Trains

FrE Aty FILOBRIEEE ¢ [ Astapocixh 1358 ]
18754, MMM BE A~y FILOERE] (IRHE)

R ALy FILCOIRIRERN @ [ Trowbridge 1307 ]

| vellow & green line X DEE2DD T A > DIFENR 2= 7Za

f 502 NalI] 589.3nm @ doublet. Mg[I] 517.5am @2 triplec
DIFEEREL TS,

EELLC & A EMEOEERE [ Millman 1950 |
Mal[Il, Mgli]l. Calll, Fal[I]

FLSE e 7 & SR a7 & ORI O 2 ~ 7 r i) -
Shinseke Al i o ! 3

~ National Astronomical Observatory of Japan

JLI-S5H



 Shinsuke Abe

[ Masirova & Nesirov 1966; Rajchl et al. 1993 ]
B AYEE < T i A SE AT R

EHIZLAMEALY I [ Rajechl et al. 1995 ]
19934Eparseid T B 45 Ta{fifi #2,

GTiE, oo /222 line(Nalll Mgll]l) LAvE TN T,
A B IE [ Trowbridge 1907; Hawkins & Howard 1959 |
I 9 0km (FAT TS VR U AT S,

¥ DR AR I D u T

EEEERIL D L0 BEEHRET TMEMIEE (ionization threshold) &ur9,
N2:79.58nm, 02:102.78mm N TINSOEGIE0kmk V TR TIZdH E D EHE
Ehavs, LAl No (E. 133.78nm DEEMEEEFS . KERKED Lyman- o
#o(121.6nm) AE kS E 02 BINDBIZHI> T T TREEITEATE LD,
Tokmf iR & TH A H OBEEETREI LSS, o OBEBIIERL TEZ SPHEED
WHEAR AR (L DR LNEL A,

¥r 1993 Perseid AHETIEA ¥ b (BBS,BBE)

The identification of nebular lines in the spectra of meteor trains.
BOROVICKA, J.; ZIMNIKOVAL, P.; SKVARKA, J.; RAJCHL, J.; SPURNY, .P
Astronomy and Ascrophysics, v.306, p.985

Aug 12, 1993

specrtrograph: slicless, prism
Lens: £=85mm, Film: Tri-X, Exposure: 20sec

meteor: 112km -> 75km
-6 mag at muximum brightness

{a)
train: 104km -> 78km (33km length)
bright part: 96 - 83km

(8=1]
train: 102km -> B82km (33km length)
bright part: 27 - BSkm

@ luminosity @ profile iX. MEXRMEF & RHFEIZIZIZHF.
O B /V— A D profile (. ARBHRISIEEMLEL Ty rdvi,

M PERI89kmT @ (diffusion and drift) AR Z b JIL -> 620 emission ATFHEH

Oxygen forbidden line : 372.6, 372.9 nm
Oxygen doubly line : 495.9, S00.7nm
S[II) : 406.9, 4076nm

Na(I].Ma[II] : 589.0, 589.6nm

CafI]l : 422.7nm

CrlI] : 425.4, 429.0nm
Fe[I]

o[x]?

N[I]?

molecular oxygen @ 384.0nm [Rajchl 1972)

Fel lines arcund 370.0nm?

National Astronomical Observatory of Japan

" Shinsuke Abe

500.0nm =+ Mgl triplet @ 517.5nm
!
nebular lines of O[II]@327.6nm, O[III]@500.7nm

emissions of forbidden lines:
S[II] @409.6nm |
O[II] @327.6nm |
O[III] @500.7nm

neutral atoms:

¥r 1993 Perseid 7K#FME A< b I (BB5,BE6)

BBl (Aug. 14, 1996),BB3(Aug. 12, 1991) -> Rajchl =t al. 1992,1%9%3 !
BBE2 {bad) ,BB4(Jul. 30, 1992) -> omitted |
BBS (Aug. 12, 1993),BB&(Aug. 12, 1993) -> Borovicka =t al. 1995

TMN 93 TR1-4(Aug. 12, 1393} -> H.Murayama and K.Ohtsuka

{1) main emission
Mg({Il: 51Bnm
Na[I]l: 590nm
intercombination Mg[I]: 457nm ;semi-forbidden nature

{2) atmospheric emission
OH red emission
NOZ2 green continuum; temp.=2000K
02 Herzberg I(Hzb) system within 460-480nm; double bands

TMN spectra -> Herzberg II(Hzb II) system 479-449%9nm
Barbier group I and II

{3) BBS spectrum
02 Herzberg emission in the ultraviolet -» wiclet/red ratio is great
night glow

(4) UV Hzb
airglow spectra of diffusion type -> oxygen night airglows
blue trains

cheoritical mechanism of meteor train liminosity

{1} recombination process[Millman 1950a,b; Opik 199%5a,b]
{2} recombination of ions and free electrons(Cook & Hawkins 1956]
{31) excited molecules(Al0,Fe0,Cal,MgO) [Baggaley 1575]
(1) decay followd an exponentical law[Hawkins 1939]
0.2 mag./sec @ 93km hight
1.2 mag./sec @ B4km hight
early part of decay: atomic oxygen

fireball temperature

) &9

{1) [Brovicka 1993]

slow meteor
99.98 %
0.02 %

fast meteor
main part: 4,000K 95 %
secend part: 10,000K 5 %

|
National Astronomical Observatory of Japan
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Routine 4-hour exposure all-sky picture from the European Fireball
Network in Modra, Slovakia, showing numerous Leonid fireballs.

The image was guided on the stars and taken onl6/17 Nov 1998 between
23:30:00 and 3:37:10 UT. On the negative are counted 156 meteors
brighter than -2 mag. Unfortunately, it was clouded at Ondrejov
Observatory and other EN stations, reports Jiri Borovicka who
participated in Leonid MAC. Photo courtesy: Rosta Stork, University
of Bratislava, and EN leader Pavel Spurny, Ondrejov Observatory.
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ZNA T IV IR

Bl FEREZ IMRIEA JE: BEFIFE

=g

ZXA 5 VIR DI BB O RSN KD Ulco Z/3A ZIVIZEI 4. 1Tnsec T, EHE
ABImDEEFNT NS Z ENGh - te COREWHEIZHE U S E3 0 NEE & RJUIEILA
Kdtz, FORER. HEWEHIZZ/ N, FIVEEIZ L TWIRNI ENGh - 7o, TREWHE
DO X RIZFNZ L SVERE LT 5,

EESEHEBRKICIZZ N, FIVDMIZ, 71 —T RUEGBEND 5, HENBELZELRAS
Foo ULDVUKRGD OZIFBHICHART, BEITRVF—-DIEEICKEV, HEYWHEDE
BOEMZ, HFEORXSBLSRNT E0G0 -7,

1. ELl®Ic

FEALOMBRBIZERTH S, L L—HOMERRIIIFERTDH S LT ) &l
WD 5, Beech(1989, 1992)[1, 2]IX T 5 DFEMERAMICWE L TS, THLo
DHFEMN S, 1852 DR/, FIVIREEBD Ry » F 2R 1I1ZR7,

X 5 |ZBeech(1988)[3]ix. FEiT1800FERDE { ORI D & JREMRITE DT =
FToTWb, FEEHREISEA—T R T, 44k, RUEEh oDMAEDI T
REPDHD, COBTER2IRT. FLFF-ERIZUTOBEY TH S,

D#O. 5XBDWMENIEEMTDH - 72,
DIEERBTEDOHN. 6 0% H—T. 4 0BNR/XAFIVTH -7
3Rk 4 kR, k. BOWMET. ChoDHRMEE T 5,

e

==2l| Classification Typical Appearance Description

Primary Classificatiom

4
(o} ’\_/ Continuous curve
I

Sinosoildal

Sub Groups

i |
,/
CR Abrupt angular change|
in direction
~
\,w
N,
™,
\\
b

Cs Curved sinosoidal

M. W. Van Morsel saw this meteor, with its peculiar spiral motion,
move across the skies of Province de Namur, France , in October
1852. The meteor was also said to have "hissed’ as it flew by.

Fig.1 A spiral meteor motion.
BT T D — e e 2 Fragmenting meteor:
sinosoidal component

Fig. 2 Schematic illustrations

of the various meteor
L Tl peart =t o S IS 1 - ' oo ragmenti meteor:
trail types. o8 e
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BeechiZ Z 1 5 OHB A itk ¥ D Magnus effect. Torque-free precession TaxfH
LT3, AT Z3HRA—IVEH—T Uy Ty bR—=IERNNA FIWERHL, UL
BEIXLPFEEBOMBEA R ENEWNWERNTINS, EHA99T) (4] d FHRREE
AT, 100 0L LOBERUT VIHEERZNIE Uizd, JEERKE AR ENT
Vo ANNA ZIVREEBED® 14#1& L TIE Sky and Telescope(1989)[5] 23 %,

—7 SARMIBDIHINRSE T, X
A FIVROTREBIED R r v Tl ->T
W5, ChER3ICBNTH. FHIEC
DHEZEFNB 0. BEBAEHITT
7o £ UTINTHEIIALITHIC, /A&
iz, UUEREBEDZ/NA IV RR
D Al RHR AN KT U7z,

AT, CORKFREENS. AN
A ZIVIEIR DI AT - Too S HITIIE
ERITEEEDOA =R LEZEZ LT

Fig.3 Kunihiko Suzuki saw this Orionid
spiral meteor train by binoculars 9%35,
at 18:14(UT) Dec 22,1982 in Mt. Tsukuba Japan:
10sec to 15sec after meteor appeared.

2. #a

B4 IZ 21 SIVRBIRDEREARY . BEEFNS R/ ZIVHEE D, FICERE
WWR-> TWABETISN 5, BAENS, ZOMEBRRFFEAINLE I -, FHRE
fMExhicolE, CO240ICHBALULKERTHD, COEEZRSIIRT, BN
250km &EU oD, SRS XD ST, XA ZIIVBRDOUZE LW EETH - 72,

Fig.4 -3mag. Leonid meteor apeared at 17:44:47(UT) Nov 17, 1997.
The meteor train photographed by M. Toda from 17:44:56 to 17:45:00CUT).

and enlarged.
Nikon F4s 200mm F2.0 Fuji HR1600 film.



fu S - o

Fig. 5 -4mag. Leonid meteor apeared at 17:42:26(UT) Nov 17, 1997.
Left: The meteor train photographed by M. Toda from 17:42:35 to
17:42:39CUT). Nikon F4s 200mm F2.0 Fuji HR1600 film.

Right: The meteor train photographed by M. Kobayashi from 17:42:36 to
17:42:40(UT). Nikon F3 85mm F1.4 Konica GX3200 film.

HIEkER AR 1 ITRT, BHHBERIET2. 0knTdh - 7o, JEOFILEFEIL102. 2km,
Z A FOIVBHIA ST, Tkmy R34 TV DHIEBALE 5395, 0kmy A/XA F VDT &N
992. 8km. JE DR ED89. IkmTH 5, AN F)vD 1 FiitsE TOBEIEEHEZ Ls . X
NRAS VD 1 EB OB A Ps GRE#HEZ 72 kn s~ &{E) (Lindblad, 1987)[7]. X
A SI)VOREEZESY Ds TR UK. A28 FViZERA4. 1Tusec T, EZR461nDH %5
WTWAZ ERNGho Tz,

Table 1 Positions of the meteor train.
Lng(deg) Lat(deg) H(km) Ls(m) Ps(msec) Ds(m)
Obs. 1 Loc. 138. 79861 35. 33333 1.420  (Mt.Fuji Half-point)
Obs. 2 Loc. 138. 36694 35. 87813 1.049  (Mt. Yatsugatake)
Train Begin 140. 92983 34. 23761 102. 202
Spiral Begin 140. 89171 34.23332 97.701

Spiral 0 140. 86089 34. 23217  94. 987

Spiral 1 140. 86057 34. 23110  94. 680 331 4. 59 438
Spiral 2 140. 86023 34. 22999  94. 358 345 4.79 439
Spiral 3 140. 86001 34. 22923  94. 140 234 3. 26 405
Spiral 4 140. 85970 34.22821  93. 845 317 4. 41 488
Spiral 5 140. 85941 34.22722  93. 560 306 4. 25 561
Spiral 6 140. 85911 34. 22623 93.275 306 4. 25 493
Spiral 7 140. 85881 34. 22521  92. 984 314 4. 36 504
Spiral End 140. 85857 34. 22442  92. 755 247 3.43 358
Train End 140. 81869 34. 22507  89. 100 = = &
Spiral Mean 300 4. 17 461
Spiral S.D. 39 0. 54 64
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ANA Z IV BYE O fEEH S MRET S EEO0M#EEIZ() &5,
rd2 = 31X ns % (L)

ST r EEEEEDsU6I)-EOBEAESN)/2 o FAEETH S, ORI
EFITREWVETH D, BEIZEH AT,

MEMENRQHF EED EXIIRTHEHEZFHET S, MEOBHNWEHR -4nag » 6
ot 54 -5, 5mag &Ko7z, WRICERITD[8IoRIc L., MEHEOHEEA 5. 8g
EULTe OICHEDOEER 0.6 g cn 3(Verniani, 1967)[9]& L. IREHE OERA
26mm & U7z, #T4ETldBabadzhanov(1992)[10]140%. U UEREMOEE A 2.5 g cn™®
ELTWS, LHALEBLSIZUTHERRMDERNE(T S &350,

Iz KRGIEF(F) DX & LU TBarger and 01sson(1973)[11]OLL F () KA H Uiz,
Fe <0.5%Cpx8x paxV® s <00 kg ns=2 (D)

Z C THEAREC(L 0), REWHOMER S . KEHE 0a( 1.6x107° kg n™),
HEME V (72 kn s71) & Ulco Cold#h FOKRKHE T, HROVERT 5 #4101 0.4
THb5, LHOURKGEENIEFICEN D 1.0 &Lk, Tl paldU. S. HEHEKRS (196
L1215 SR U A O (198D 1312 LT, MK 94kn ORKERE ZRD I,
(DROBHFERIH EORKKEET, EBEETH S, L LAROHMOHICIE+
HTH 5,

ZOHT X OFEEYENZ HMEEERD S E -380 n s72E785, ZOMEEZE
0.1 BHZIET 5 LRI 38 n sTHR#ESI N D, THhIFRKREE UTREEET
5o

(D) TERDIRK[BEIICH UT, (DOMEEIEHEDICHRENI ENGN 5. £
THREWEII R/ A FIVEBIZ LT -2 S 5, MBROD R/ Z VBRI
REDENSBBINIHRIETIN, AL SNVERE LTINS I ETHEANTE 5,
BZAE. AHZZLIEZEZDES EEID, BEEDRX/XAF)VY = v b (Sekanina, 1987)
[41#EE XD,

ZNA SIVIBDIEEA 1 = R L A#284 %, Knudsen®(Kn) (Nanbu, 1992)[15]% K%
5 EB)ERELRS,

En = 2/L=2.2 (3)

I THEMknO K[ OFHHBITE A (56mm), #EDKExx L (26mm) & L7z, Knu
dsen At 0.01 DL LOHEEIL, HHIUEELTE S, Lo THREWEOHERICHAM LT
ANA ZIVIEDER I NI LT 5,

L UIRESENSFE L H RFIRGU EICBWEEL SNSE, TOHE. REY
BHEFICHEIEL S, MEWEOBIEEHITHEIEEE L, ARG/ FIVRICHEE &
N5, COBERBEYEOHERA M IIWVELID bEHETH %,

CCTHEWED SRLETBH ADEBEELERDTHL, MEEROH AFTOKE ZH
EMEOMEMER U ERET S, TLMEORKER 16. Thm ThHB, K> THRD
#EIX 6.6X107* kg m3&7 5, THIBIRKI[EFEOHL0MMETH 5,

AEOBRUMNED SITHETEIME, Eo XD U, AN FIUPREEFTIHE
D, FLUTEFTER->TND I LD, BIROAKRO EIZDD BRI,
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SOREBREEDT, I—TITHHMBEREEEZTHS, LEREDOETAMICEA
WHMIZAPMD YD =T 5 EEZ 5, HIAE 0.1 BREIC 10 kn sT'OEEEEZ
5510% 580 kg m s72&75 %, RGIEMIZQORDBYTHEMhS., TOLHIWKEITA—
TREVRT D, FHLEL UL ICRBRAEFHESIETH S5, HEWENEELT
WTH, A—TFTE5DDHITELITL U,

RICAHE T HMERBAEL CHD, CITIRHETS 1 DOMEDEIFE L T2
BELD, ThTNDED) ARICESH Z=EZ 5, M6 ICZOKTERT. U UERE
HOMEGEE 72 kn s V)N #EFTHM%A 15deg BILEIH D EMBHET S, DS, £
THBEEEAOFMIC 19.3 kn s TBEI LAITHIEIE S0, SAED 2E S50 2
cn BN T, BHVOEDEZAELTNS EEZ S, 19.3 kn s *D7zd DEEREIL.
3.1%X10° rev. s 1&M B, FNhEFNOEEOERY 1g £T5 &, ELHIE 3. 7107
kg m s 2L 5, ZHIFIEFHICKEWATH D, TOEEHICKBHENIC. MEWHI
GHRLUTUE ), Lo TEHERIZZHUTHRERBEVSET S EE I A A=K LELEKD
J_qu:fcib‘o

BIRICE S IEMEOBRFEARREZZ 56 TES, LM LYy PESETL
Ty —BHCUTHHEE Hhnd OIEE 5 Z 585 EIEITH A D 0.

72 km s~ 2cm
|

QT 19.3 km s

Fig.6 The branching meteor trail.

HEFIX19754F8H 128 146303 14 (UT)ic 2k ER = HB LT 5, -1lmnag, Rfa. #E
Gelkrf] TR, EEOBWEREREBIE - 7c, #1H 1 S5 -700E0, BEEPTHREL, £
B EEEITTDHE, BhdEHN, 2FORBRBIIEUTHS, ZOMEIIER
Zbhwmonh, BEAFRULD. SR UETFRE > T, ZOBRBIIROFH
WHEETH 5,

DSAT T 5 EYE R,
DBNIBIIERED S IR IoWAL T 2 LIcEME THhIE, RI[EHIT
BT REET D,

DRXAEFEA LT, 0.1 BEICHED 10% BET AR FEHEEZRDTAHAS., HEY
HoEEon( 1gcen 3, KGEE ca( 2X107° kg n 2 HE80km) ., HEEE V ( 20
km sTD) ERET S EMFERIE 0.3 nm 725,

4. Fh

REMIT > TI00kn EZEDOKRQHEE (IH EDOFI100757D 1 TH B, £ U THE D
BTN — L D#1000/5TH 50 AKIEILIZEED 2 T LA D7D, MENRIT S K
L EBHRA— VRS 2 EMIEZRFALCTH %, L LIREYWE DER T X)L+ -3
1051 TH b, &> TARKIRIIC LB MENHDOEB DL AT, HEHVKRECLHA
WeEEZ 6N 5,
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i LT REROBEIMHENICTDN S, HRE LTHER Y /S 7 KBNS N S
Bt B,

A TIE. MEBBOX A FIVEREHSMIT S LRI, MEWEDOHIEZRRT
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CDANA FVEABBREOBNBEETHE TS E, MMVHABEZEIRELTELTH
A9 THBEHEBMMNEL RS EZLDHRIZESIZAI,

ZhUNDH—T . Friiid s ERKICE U T3S aEREsHTBER LT -7,
IOIAHLUT. 2RBICHNLMEICE LU TIE, £2<EENTER N, =T, i
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First observations of long-lived meteor trains with
resonance lidar and other optical instruments

M. C. Kelley!, C. Gardner?, J. Drummond®, T. Armstrong*, A. Liu?,
X. Chu?, G. Papen?, C. Kruschwitz!, P. Loughmiller!, B. Grime®,

and J. Engelman'

Abstract. In November 1998 the earth passed through
a maximum in the cometary material responsible for the
yearly Leonids meteor shower. The meteor storm event pro-
duced numerous examples of long-lived chemiluminescent
trails—visible to the naked eye—over New Mexico, where
a major observation campaign was centered. One trail was
detected for over an hour with a CCD camera employing
a narrow sodium filter, and many others were observed for
over ten minutes each. For the first time, sodium densi-
ties in such trails were measured while also being imaged in
sodium light. We have verified one source of long-lived light
emissions—a sodium-catalyzed reaction involving ozone—
but it is far too weak to explain the visibility of such trails.
In addition, we present a new explanation for the cylindrical
shell appearance long reported for chemiluminescent trails
and show that ozone depletion by chemical processes is a
possible explanation for this phenomenon.

Introdnction

Ome of the seost fascivating effects of meteor entry into
the earth’s upper atimosphere is the occasional production of
long-Fwed chemiluminescent trails. The first reports in sci-
entific literature stesw from observations of these trails dur-
ing metear storms in the last century, particularly during the
1866-68 period when the Leonids meteor shower exhibited
one of its 33-year activity peaks. The drawing in Figure 1
reproduces what a visual observer saw over Cardiff, Eng-
land during Leonid shower activity on November 14, 1866
[Trowbridge, 1907; 1911]. The trail was triangulated from
Sidmouth and Cardiff and found to have a length of 26-29
km and a mean height of 90 k. The trail was visible to the
naked eye for 12 minutes.

Even to this day, the process or processes responsible
for this phenomenon have remained uncertain due to diffi-
culty in performing measurements during such a transient
phenomenon. Here we report on a comprehensive set of
observations made during the 1998 Leonids meteor shower,

L Cornell University, Ithaca, NY

2Dept. of Electrical and Computer Engineering, CSRL, Uni-
versity of Illinois, Urbana, IL

4 Air Force Research Laboratory/Directed Energy Directorate,
Kirtland AFB, NM =

fLos Alamos National Laboratory, Los Alamos, NM

*Dept. of Electrical Engineering, The Pennsylvania State Uni-
versity, University Park, PA

Copyright 2000 by the American Geophysical Union.

Paper number 1999GL0O11175.
0094-8276,/00/1999GLO11175%505.00

observations that provide the opportunity to quantitatively
test the sodium airglow theory for the origin of this spectac-
ular light show [Chapman, 1956; Baggaley, 1977a; 1981]. A
unique aspect of the approach used here was the coupling of
the University of Illinois resonance sodium lidar to the 3.5
m telescope at the Air Force Research Laboratory’s Starfire
Optical Range (SOR). We were thus able to measure—for
the first time—the sodium content, temperature, and spatial
distribution for long periods of time.

The measurements were conducted as follows. The
Leonids shower peaked on the night of November 16/17 in
1998, a night that was very clear over New Mexico. Rooftop
observers recorded meteor visual magnitudes and rates and
waited for a lingering trail. Once sighted, the telescope op-
erator was given look directions until the trail was visible
in his bore-sighted, image intensified camera, at which time
he tock over the tracking. The laser beam was invaluable
initially as a pointer, assisting the rooftop observer. Later,
even when the trail was too weak to see in the bore-sighted
camera, the sodium resonance backscatter from the trail was
used to track . Other astrenomical aspects of tlwe observing
sdkeme are described by Drummond ef ol [2060].

in copjunction with Los Alamas, Cornell University fielded
a CUD-based all-sky camera with a narrow (2 nm) sodium
filter. This camera was located at Placitas, NM. A 400 mm
lens was used with a CCD camera to make white light ob-
servations at SOR. Finally, a powerful copper vapor laser
operated by SOR was used to illuminate the trail.

Other results from the campaign are reported by Chu et
al. [this issue| and Grime et al. [this issue].

Data Presentation

Some of the trails’ complexity, as well as their beauty,
have been recorded with the 400 mm camera, which had a 2
degree field-of-view. The trail seen in Plate 1 had been in ex-
istence for about 82 seconds when this frame was obtained.
The trail was formed in the 9%0-100 km height range. The
distortion of the trail is due to atmospheric winds that vary
with altitude. The double-edged character of the trail has
long been thought to be an optical depth effect caused by
viewing a cylindrical shell from the side [Trowbridge, 1907;
1911; Hawking, 1957]. We return to a discussion of the shell
formation below.

Plate 2 shows another trail detected at the SOR using
the same CCD camera. Notice the great similarity of this
photograph with the sketch in Figure 1. The laser light
sources can also be seen in the images. The most intense
beam in Plale 2 is from the copper vapor laser. Light from
the weaker sodium beam can be seen in both figures. We
were able to track a dozen lingering trails over the course of
the evening,.
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Figure 1. Persistent trail abserved over Cardiff, England during
the 1866 Leonids. The top portion shows the initial trail while
the lower portion shows the trail minutes later after distortion
by gravity wave activity. This sketch is one of many made of
persistent trails during the 1866-1868 period.

The sodium resonance lidar has the ability to measure
the amount of sodium in the upper atmosphere as well as its
temperature and mean velocity in each range gate [Gardner,
1989]. This measurement is the crucial one which, for the
first time, will allow a quantitative estimate of the sodium
glow component in the chemiluminescence theory of Chap-
man [1939, 1956] and Baggaley [1977a, 1981] outlined be-

Plate 1.

Trail observed from the Starfire Optical Range on
Kirtland Air Force Base near Albuquerque, NM. The meteor of
magnitude -1.5 appeared at 2:28 MST on November 17, 1998 and
remained visible to the naked eye for about 5 minutes. This image
of the trail, dubbed the Diamond Ring, was a one-second exposure
taken with a Photometrics CCD camera with a 2 degree field-of-
view 82 seconds after the meteor’s appearance. The sodium laser
is faintly seen as the straight shaft of light coming in from the
right. The circular appearance is quite similar to that of artificial
trails made using tri-methyl aluminum released from rockets.

KELLEY ET AlL.: LIDAR/OPTICAL OBSERVATIONS OF METEOR TRAINS

low. All of the trails tracked by the system and within the
spread of the laser range pates exhibited very strong reso-
nance sodium backscatter. The trail in Plate 2 was at an
elevation of 30° and just outside the reach of the largest li-
dar range gate. However, as shown below, the trail glowed
brightly enough in the sodium emission line to be detected
for over an hour by the all-sky camera.

An example of the measured sodium profile display from
the event shown in Plate 1 is presented in Figure 2. The
spike at 92 km had a peak sodium density ten times that
of the background sodium layer, which is also apparent in
the plot. Two spikes are seen, since the laser was pointed
at the place where the trail seemed to cross itself. Such
measurements will allow for a quantitative estimate of the
sodium glow from both the trail and the background sodium
layer airglow intensity. Sodium all-sky camera images of the
structure shown in Plate 2 are presented in Figure 3. The
length of time the emissions last and the wind-induced dis-
tortion of the trail are evident in this presentation as well.
Together, these data show convincingly that sodium glow
is a component of the lingering trail phenomenon and ver-
ify the earlier suggestions by Chapman [1956] and Baggaley
[1977a, 1981] that sodium airglow chemistry plays a role in
the lingering trail phenomenon.

We have searched the CCD images for any evidence of
Mie (dust) scattering of the stronger CVL beam, without
success.

Discussion

In brief, the sodium-based theory for long-lived trails in-
volves a catalytic process in which the sodium released by

Plate 2. Another trail, called the Glowworm, observed from the
SOR on Novermber 17, 1998, It appeared at 3:06 MST and was
magnitude -4.5. The image is a one-second exposure taken 97
seconds after the appearance of the meteor and was visible to the
naked eve for more than 20 minutes. The bright beam from the
lower left is the 180 Watt copper vapor laser, while the 1 Watt
sodinm laser is barely visible coming in from the right.

MSS-069§
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Figure 2. Typical sodium lidar profile for the trail shown in
Plate 1. The two spikes correspond to where the laser intercepted
the trail at two different heights. The lidar has a range resolution
of 24 m and took 15,5 time integrations. The signal was sc
that the laser power was reduced to avoid saturation. The natural
sodium layer is evident as well from 80 to 105 kin.

strong

meteor ablation cycles through a set of reactions, thereby re-
leasing energy stored in the ablation/burning event behind
the meteor. The reactions proposed by Chapman [1939] and
later in the meteor context by Chapman [1956] and Baggualey
[1977a, 1981] are as follows:

Na+ Qg — NaQ +1Da» {13
Mal® 40 — Ma 40y (3

Sodiem & thus aveilabie o repeatedly pass theough this
sl cmeme vemadins aveilable for veaction (1),
Hopgeod [1980 maede an impoviamt advance by observ-
ing a lingering trail with a filter {700-900 nm) that did not
pass the 589 nm sodium line. He attributed these emissions
to the excited infrared states of Oz expected in these same
reactions. A broadband IR imager fielded at the site for
measurements of OH emissions detected emissions from the
trail shown in Plate 2 and in Figure 3 (G. Swenson, per-
sonal communication, 1999). However, since the OH and
02 bands overlap, it is not possible to tell whether the sig-
nal was actually due te OH or from the Oy lines reported
by Hapgood [1980].

Some qualitative estimates of the expected airglow are
given here, based upon a model under development. Us-
ing the lidar-determined sodium density and physical size of
the trail determined from the cameras and the sodium lidar
profile, the total amount of Na is found to be =2 2 1040
m™! along the trail. Using the reaction rates provided by
Plane and Helmer [1994] and the recently determined per-
centage of Na in reaction (2), which goes into the Na(*D)
state [Hecht et al., 2000], we find a sodium line emission
rate of = 3 x 10"*.m*s~'. Such a rate is a factor of 30
below the 30 ergs/em-s required as a minimum for visibil-
ity by the naked eye [Cook and Hawkins, 1956]. Baggaley
estimated much higher sodium emission values, but used a
much larger branching ratio in reaction (2) than was re-
ported by Hechi el al. [2000]. The rates we find are in good
agreement with the 10-600 Rayleighs determined from our
all-sky imager data. We thus conclude that although the

cycle, o

spevtnacagyy will be csndacked i Baeiare 1

MS$S- 0 9¢
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catalytic sodium reaction chain does occur in the lingering
trail phenomenon, the 589 nm line is too weak to explain
the total light intensity.

If reactions (1) and (2) are a main source of the visible
and broadband observations, then the Oz lines must play an
important role, as first suggested by Hapgood [1980]. These
caleulations are underway and will take into account the
depletion of ozone implied by (1), as well as other metallic
contributions to reactions with ozone and atomic oxygen.

We suggest here—for the first time, as far as we can
determine—that the chemical ozone depletion caused by re-
action (1) may be responsible for the hollow cylinder effect.
Initially, with a trail radius of a few meters, the Na density is
the order of 10'® ™ which, using the reaction rate of 107"
m®s™! of Plane and Hebmer [1994], indicates an ozone de-
pletion time constant of about one second. The background
O3 density is only about 10 m™, so rapid ozone destruc-
tion is possible. Eventually, ozone diffusion back toward the
center of the expanding cylinder would balance the chemical
reactions in such a model. ‘Ozone destruction would reduce
the Na emissions even further. Baggaley [1977b] suggested
that charge exchange beiween Na and the many metallic
ions created in the aklation process might reduce WNa emis-
sions af the ceater of the trail and lead to 2 hollow cylinder
effect. But since the Na light is so weak, this mechanism
does not seem faasible for a visible effect.

Zinn et al. [1998] have proposed an alternative model
in which an intense UV flash destroys all the ozone in a
cylindrical ragion. thereéby yvielding an active Na/Os airglow
zone only at the periphery. More experiments with better
somids ElWers,
B
o telwenn the vender
1, thee holisw oyfmder

vidhwidle sfeenald fholp to resclve the open e
Frimelidye, leomuse af the dwep o
i i adges of the slnectere i
s callisd dote qusstion.
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Figure 3. Images of the trail shown in Plate 2 as seen from
Placitas, New Mexico, 30 km north of Albuguerque, with a CCD
all-sky camera using a sodium filter. The camera took 90 s inte-
grations. The trail was seen by the camera for nearly an hour,
long after it was no longer visible to the naked eve.
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A theoretical model of golumniform sprites (or c-sprites), a dis-
tinctive class of high_alij temporally brief optical emissions; is
resented and compared to obsérvations which extends earlier work
1998, E. M. D. Symbalisty, R. Roussel-Dupré, and V. Yukhimuk,
EOS Transactions of the AGU 79, No. 45, p. F129) by making a
strong connection with meteor; ﬁ]& key features of the model are:
1) an ambient conductivity ﬁn eft_h

mighttime and a measured daytime re
duced conductivityfj\n a trail|from a meteor that passed through

me time duri E_Ehe evening, and (3) a cloud-to-grouniiu;geafter
I)-lighmin%gﬂs@ith sufficient charge transfeg\,]ﬂg q ﬁeﬁt to

and occurrin A
I he model pregdicts a temporally brief column of

o
uctivity trai
itFesalfing from the conventional break g:m of air in a strong

ric field-in-the observed altitudg rapge.For the case of a posi-
mowﬁﬂs&lﬂ by the passage of a
way electron beam. The electron beam is initiated by the same
sitive CG lightning stroke 5 the high altitude conven-
nal breakdown to occur an

tabout twice as bright. The emissions are extinguishedgin this

the ambient conductivity taking into account the increase

:to the conventional breakdown of air(In both casedylor the CG

ftning stroke parameters examined here;the simulatéd c-sprite

Slons .are brief and last| less than 17 ms) or one CCD video
© 2000 Academic Press
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1. INTRODUCTION

The first, columniform sprites (c-sprites) reported (Wescott
et al. 1998) were vertical columns of light that extended from
about(76 to 87 ki and probably less than 1 km in diameter.
According to Wescott ez al. (1998) the uncertainty in height de-
termination for their c-sprite measurem w3as, approximately

km. The standard’ m& the heights

images was 1.9 km for the top and 1.4 km
is a reproduction of a CCD video image
aken by us, and quite similar to the first

for the bottom. Fi
of a c-sprite

recorded images. Additional observations of c-spritesySome of

- which may extend to lower altitudeg»}haﬁ’e been recently re-

ported (Moudry et al. 1998, Gerk_ggfe_tﬁai.,l&?%). The bodies of
c-sprites usually appear W@ym&m some gasese.
A

slightl)? and are composed of brightdbeadsand dark regiongZ

ndry et al. 1998). The model§ve noW-describe)provides an
‘fﬁmﬁo the observed c-sprite phenomena) We first ex-
amine so bient atmospheric electrical parameters to set the
stage for the model. The measured ambient electrical " i
time@i-s quite short at high altitude for a typical nighttime,
mid-latitude atmosphere. See Fig. 2. Also, the shelf near 85 km
in 7 represents the transition from an ion dominated to an elec-
tron dominated electrical conductivity, &/ The obsewaﬂon@at
c-sprites extend to aboyt an 86 km altitude therefore suggests that
the c-sprite tops are té}ﬂgﬁ@d by this high conductivity shelf.
The electric field ld for the g@%breakdow:l of
air is relatively s igh altitudes compared to surface val-
ues because of the lower atmospheric pressure. These electric
field values can be realized by the remaining polasization field

7
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FIG. 1.
visible at the bottom of the image.

between the cloud tops and the ionosphere when
lightning stroke occurs. We find 30-40 kiloampere (hereafter
kA) strokesgasting on the order of 5 ms}ue quite sufficient to
produce electric field strengths exceeding the conventional (or

thermal) 1:)rmkclowncb _)from about 65 km to the iono-
sphere. However, the breakdown will occur in large, horizontal,
_pancake shapedlayergathigh altituderesulting in similar shaped
visible emissions and not the observed slender columns of light.

Therefore a piece of the puzzle is still missing.
The remainder of the paper is divided into the following sec-

tions: (2) the meteor conf}%é’%\;__@_)_the electrical conductivity
(in a meteor traily (4) thér_r préscription for calculating the optical
emissions from.co’%vé"'tlonal"ﬁnd %fuuaway air breakdown; (5)

o ok =~ TR\ ikl SOTY )L e N T o
the description of cdmputer simulations and observations; (6)a

<-®fﬁ {scussion of the results; and (7) the conclusions.

2. METEOR CONNECTION

The traditional studies of small meteors have shown(;hat these
bodies are largely permanent members of the Solar System

A CCD image taken on 5 August 1996 comprising a cluster of c-spri

e ikl - skl o

tes. The UT time and date and lightning emissions from the storm sy&

a strong CG lp{\}\vhich can be hroadly divided into two distinct classe‘ﬂ}

classes include the sporadic meteor background@hose
rate varies substantially on a diurnal basis and the meteo
ers whose orbits are largely of cometary origin (with th
exception being the Geminids). The sporadic hackgrou
tributes some 75% of the total<nflux of these material
Earth (Ceplecha et al. 1998){Despite this faddthe.precis
of these small bodies is not well understood. The c-sp
to be discussed shortly indicate€hat a substantial mete«
required to explain the multiple c-sprit%’s?obscrved in
video fram@ [ what follows) for completeness we h
the possible meteor showers on each day and time of ou
observations in order to gain an appreciation of the di
annual time-scales of the meteor influx variability.
The times and data of the c-sprites in Figs. 2 ar
Wescott et al. (1998) are 06:35:48.538 UT and 05:39:%
on 19 June 1995, respectively. These parameters COITe:
with the passage o of the radiant for the
Lyrids meteor showefr, which occurs from June 11-
maximum on June 16 (Cook 1973). Cook lists adec
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ermine that the tubular structure expanded at a near constant 10.5 ms’, independent
altitude between 86 and 97 km. An initial fast decrease of train intensity below 90
L was followed by an increase in intensity and then a gradual decrease at longer
es, whereas at high altitudes the Integrated intensity was nearly constant with time.
s results are compared to a model that describes the dynamical evolution of the
n by diffusion, following an initial rapid expansion of the hot gaseous trail behind
etecoroid. The train luminosity is produced by O ('S) emission at 557 nm, driven
levated atomic O levels produced by the meteor impact, as well as
miluminescent reactions of the ablated metals Na and Fe with O;. Ozone is rapidly
oved within the train, both by thermal decomposition and catalytic destruction by
etallic species. Hence, the brightest emission occurs at the edge of the train
veen outwardly diffusing metallic species and inwardly diffusing O;. Although the
el is able to account plausibly for a number of characteristic features of the train
ion, significant discrepancies remain that cannot casily be resolved.

ords: Airglow, chemistry, dynamics, Leonids 1998, lower thermosphere,
phere, meteor, persistent train

arth, Moon and Planets 82-83: 47 1488, 2000.
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Figure 1. The 01:31:16 fireball photographed by Steve Evans of the British
Astronomical Association — Meteor Section.

1. Introduction

Bright Leonid meteors are known for a characteristic long-lasti
persistent glow that is called a persistent train. The luminous source
persistent trains has not been established, although it is gener
believed that the reaction between ozone and atomic oxygen, efficien

catalysed by meteoric metals in the train itself, is the dominz

mechanism (Kolb and Elgin, 1976; Poole, 1979; Baggaley,
Hapgood, 1980).

Persistent trains probe upper atmosphere chemistry. Moreover,
enable probes of meteoric aerothermochemistry by providing direc
telescopes many minutes after the meteor has disappeared (Jennisk
al., 1998). Several such experiments during the Leonid Multi-Instrun
Aircraft Campaign (Jenniskens and Butow, 1999a) have provide
first visual, near-IR and mid-IR spectroscopy of trains. In order to.
interpret this spectroscopic information, we study here a rather str
example of a persistent train observed over the United Kingdom in
in order to examine the evolution of trail width and intensity with
Unlike many other trains, this train exhibited little distortion fro
shear along the trajectory and remained fairly linear durin

observation period.

DYNAMICS OF A TUBULAR LEONID PERSISTENT TRAIN 473

2. Observations

At 01:31:16 UT on November 17, 1998, a bright Leonid meteor (Figure

1) erupted over the southern U.K., moving from Southend-on-Sea to just
‘beyond Reading. Amateur astronomer Sandy Osborough, from
_Chippenham, Wiltshire (51°28'N, 02°07'W), was located near the end
-point f)f the trajectory. The meteor was outside the field of view of his
.1nten3}ficd video camera, but the scattered light in the atmosphere left a
ash in the video record. Osborough adjusted the viewing direction of
he camera and obtained a particularly nice record of the "Chippenham"

ght part of egch frame). The train persisted longer than that, but the
amera was pointed elsewhere. He used a 45 Ip/mm ITT Night Vision
ogles attached to a 3CCD Panasonic digital video camera. The close

s

ange of the train (116-80 km) produced a spatial resolution of 0.2

o 5

gure 2. The train as seen by Tim Haymes from the pcrspectiveﬁ?fﬁﬁnowl Hill
f) and by Sandy Osborough from Chippenham (right).

train wslxs also filmed by Tim Haymes from Knowl Hill, Berks.
8 .51.3' W, 51°°30' 22.1" N), again from relatively short range
- km). Haymes used a 28 mm £/2 lens Imaging onto an 18 mm 2%
ation MCP image intensifier (30 Ipi). The image resolution was
km/pixel, but the noisier tube created a less exceptional image.
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From his perspective, the train was less forf-:shprtcned (Figure 2, I.eft
panels). Haymes also captured the diffuse beginning of the metecir, first
detected at about 183 km altitude at 01:31:13 UT, until it left the field of
view at 145 km. A bright flash was timed at 01:31:16 UT. After that, the
camera was hand held and pointed at the train from 01:31:30 until

%, % '{ i}

01:32:33 T, and again from 01:34:58 until 01:35:17 UT when only the A M R M e G 1 %
bright loop in the center of the train was visible as a d1ffu§e blob. A faint ; L ‘

sonic boom was heard around 01:36:40 UT, Con_sistent with the distance Tk ﬁ "'=-‘<’*ﬁ¢a% ““gg; *gi Vg gg; @%
from the meteor train. This is the second sonic boom reported for 3 ._ % % Ly

bright Leonid fireball (ReVelle and Whitaker, ]999).' Unfortunately, the
convergence angle between the planes emanatln_g from the two
observing sites is only Q = 3°, too small for Stereoscopic measurements,
Fortunately, the meteor was photographed by Steve Evans from :
Thurlow, near Newmarket in Suffolk (52° 7' 58".1 N, 0° 2.6' 49".1 E, Alg:
83m), in a 5m59s exposure on Ektapress 1600 commencing at 01:29:00
UT (Figure 1). The perspective was good, with a convergence angle Q =
29.8° with Chippenham and Q = 27.1° with Knowl Hill. Tnangglanol;
shows that the meteor entered the atmosphere at an angle of 29° W.lth the
horizon and came from an eastern azimuth of 87° from North from a
direction Right Ascension 150.0 = 0.3, Decl. 23.8 + 0.3. The meteor was
first detected at an altitude of 116 km and left the phptograph at 8_6
The two linear parts of the train span the range 98 untll_ 85 km, whﬂg_ t
end point of the Chippenham train is at about 80 km altitude. Photon_z;e:
of the meteor and stars gave a peak brightness of M, = —9 - | _magn.
the edge of the photograph. Beginning height apd end height suggest
peak brightness of —10 + 1 magn. in comparison to the trajec i
calculated for other bright Leonid fireballs (Spurny et c:u‘., 2000). Th
mass of the meteoroid was about 0.1 kg, within a factor of two.

Figure 3. Sequence of ima
02m52s after the meteor,
the linear parts.

£¢s as seen from Chippenham between Om15s and
showing the formation of the loop and the evolution of

is train is very unusual because the two straight sections of the
jectory remain almost straight with respect to the star background
gure 3). Note that the lower part gradually gains upon the higher part
| may be rising in altitude. Only the bright middle section forms a
P, which eventually overlaps in the line of sight. At the position of the

the wind direction changes dramatically with altitude. It is from the
rth in the straight sections, while from the East in the distorted middle
» with strong wind shears in the transition regions.
agnitude of the wind vector changes only by a factor of 2-3. Most

he wind shear is laminar, preserving the tubular structure of the train
ng distortion.

3. Results
3.1. TRAIN MORPHOLOGY

The train consists of two parallel somewhat diffuse ]un?mous:-_-.
which are visible along the full length of the recorded trajecto
double structure has been noted previously and is a characterlstlc___z
of long lasting persistent trains (Jenniskens er al., 19?8). The d
trails show some amount of puffy billowing, which implies some
of turbulence.

ost likely morphology is that of a tube, for two reasons. First of
m the somewhat different perspective of Knowl Hill, the train
€r (in km) is the same as that measured from Chippenham (Figure

b0 -SSH
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2). Secondly, one can see that the distance between the two walls doeg
not change where the train distorts in a knot and the line of sight cuts at 3
different angle through the train (Figure 3).

Figure 5. (a) The
separation between the
peak intensity of the
tubular walls; (b) the
1 thickness of the tubular
1 wall; and (c) the integrated
intensity of the tubular
walls as a function of time.
Symbols are: Pos. [ (e),
Pos. II (+), Pos. III (x),
Pos. IV (0). Model results
shown are for 86 (solid
+ 1 line), 89 (dashed), 95
4 (dashed) and 97 km
altitude (thick solid line).

Separation (km)

T

o

Thlckness (km)

Figure 4. Full frame of the persistent train as seen from Chippenham at a time
45 seconds after the fireball. Four positions are indicated that were studied in
detail, at altitudes 86 (I), 89 (II), 95 (III), and 97 (IV) km. =

rER O 7 =

ala o by

3.2. DYNAMIC EVOLUTION

Over time, one can see the walls of the tube separate and siigh’f
thicken. We analyzed this behavior by fitting a set of two Gauss
curves to the variation of intensity in a slice perpendicular to the tr
four positions indicated in Figure 4. The positions I-IV corresponc
altitudes of about 86, 89, 95, and 97 km, respectively. =

Figure 5a (top) shows the separation (in km) as a function of time
find a constant expansion velocity of 10.5 + 0.5 ms™ for all posi
There is no sign of a slowing down over this time interval, e
perhaps for the highest position at 97 km. The fact that the expanst
practically altitude independent between 85 and 98 km is surprisin
addition, the least-squares fit through the data does not extrapola
zero separation at zero time, but yields a positive intercept of 0.13
km. This may signify an initial rapid expansion of the train, but the.
value does not exclude a more mundane artifact of the meas
procedure.

0 50 100 150 . 200
Time (s)
tubular walls are resolved at the end of the exposure. We measured
ickness at half peak intensity as a function of time and deconvolved
a 2-pixel wide Gaussian response curve. We find that the turbulent
tend to show slightly more billowing over time, gradually
ckening, but the expansion slows down after about 100 s (Figure 5b).
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6). The brightness decays fastest at the lower altitude end of the train
(left in Figure 6), while the higher altitudes follow in succession.

Phase (II) is characterized by the initial brightening of the train. The
intensity peaks earliest towards the middle part of the trajectory, with
mechanisms delaying the increase at very high and very low altitudes.
The subsequent decay has a time constant of about 63 + 2 s at 86 km, 70
+2sat89 km, 150 + 20 s at 95 km, and about 190 s at 97 km altitude.
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time (s)
Figure 7. Integrated intensity variation of the knot (*) and the total intensity of
the loop (0), scaled to that of the "quiet" train at position I (+). Solid line shows
A model fit for the height of 86 km (in units of 10° photons cm? 5%,

1S intensity increase during Phase (I) may be related to the
ghtening phenomenon that enhances the brightness of the loop

Figure 6. Altitude dependent decay of emission during the first period fro ween 90 and 94 km. The integrated jmcnsity s P i
15.0 to 34.5 seconds after the meteor (in intervals of 1.5 seconds). A star (left)

shown for brightness reference.

te 4) is shown in Figure 7, in relation to the brightness of the linear

The two sides of the tube do not have the same intensity at positic
and II (Figure 6). One side is brighter by up to 50% over 'the ophe
integrated intensity of both tubular walls shows three distinct 1[3:;] .
decay, particularly below 90 km (Figure .5(:., bottgm gra;_)h). 3
fast decay (I) is followed by an increase in mtensny,. Whl(.:h after
time decreases again (II). At the end of the observing time th
: lows significantly (IIT). L L e
defsﬂzszata; ;)1::5 agdecay tixie( of about 15 s;conds, which is sl
altitude dependent. This altitude dependence is apparent whcg Vi
the train intensity in the meteor video during the first 30 seconds

ture breaks down during bending and a wall of billowing emission
served. Here, we find the quickest brightness increase, which is
ed by a decrease that mimics the linear part of the train (open
$ i Figure 7).

se (II) is most apparent in the high altitude part of the train, but
isible in position II. This phase represents the late stages of train
on. It is well represented by our model calculations below.
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5@ 4.1. A MODEL OF A PERSISTENT METEOR TRAIN

e L A LA O Y L EON T FREATN 481

produce additiona] O (the green tail of Leonid meteors, in particular, is
caused by emission from O ('S) which is highly dependent on the atomic
O concentration, ag discussed below). The depletion of O; could arise
both from thermal dissociation in the initially very hot train, and metal-

4. Discussion

The persistent train luminosity is thought to be caused F_:)y the catalytic
recombination of ozone and oxygen atoms by meteoric metal atoms
(Chapman, 1956; Kolb and Elgin, 1976; Poole, 19_79; Baggaley, IQS{))_
Recent spectroscopic observations of persistent trams. during the Leomd
MAC mission and at the Weybourne Atmospheric Observat.ory in
Norfolk (Jenniskens et al., 2000b) have confirmed thaF the most intenge
emission arises from the Na D-line, almost certainly through the
Chapman airglow mechanism:

. -
Na+0O; — NaO+0, & L | B 2000 |

| B 4000 |

NaO + O — Na(3°P, 3°S) + O, 2) | 6000

500 - 8000 |

where the branching ratio of reaction 2 to produce the Na (3°P) state | 10000 |

(which then emits an orange photon at 589 nm) is about_lO% (Clemesha
et al., 1995). Molecular emission bands also probably arise fmm:_

Fe+0, — FeO(A etc) + 0, 3)
FeO+0 — Fe + 0O, 4)

-500 0 300 1000 1500

i i ite Horizontal distance / m
where reaction 3 is sufficiently exothermic to produce FeO in excite e

-1000

Other metals such as Ca and K will also contribute to the ov _.a}
emission intensity, but the ablated concentrations of these metals a by 500 and 1000 m

; 991 mission patch visible at 50 s and 100 s is due to [OI] emission, the outer ring is
much lower (Plane, Ih )h twin tracks of the observed traif are difs ue to chemiluminescence from metal atom reactions with ambient ozone.
If we now assume that the twin trac 0 _
L e : i from below (e.g. | : s
luminous tube with a dark center Whe; Vle\:edmust be that Ot have therefore constructed a model of a Leonid meteor train in order
3 oy 3 =y c & 4 = - .
8), thenththe c;]{pla'lilatl(‘)n o Ehria((i:?iz)n: el?asrbeen consumed. The s: mulate the train €Xpansion, the increase in wall thickness and the
“fuels” these chemiluminescen 8, X

hypothesis was made independently in a recent paper .by KC]]C}J’}]. o
(2000). Of course, these emissions also depend on atomic O to 03(,3 OIJ

the catalytic cycles. However, O is in excess over O; by about 3 or
of magnitude in the ambient nighttime upper n.lesos.ph.cre, Ellcll.
meteoric impact on the atmosphere causes the dissociation 0

el makes the following assumptions:

The meteoroid ablates according to the deceleration equation
(particle density = 3,200 kg m, drag coefficient = .75 ang shape

actor = 1.2 for g sphere) and heat transfer equation (heat of

1bli =2 x 10°J kg and heat transfer coefficient = 0.5) given
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by Hughes (1992). Fragmentation is not considered in this simple
model. In order to provide sufficient metallic species to cause
effectively total removal of O,.in the centre of the train after 50 s, the
initial meteoroid mass has to be in excess of 0.1 kg. The simulations
shown here employed an initial mass of 0.2 kg, at the upper end of

" DYNAMICS OF A TUBULAR LEONID PERSISTENT TRAIN 483

Mt.thagh_ et al.. (1990). Assuming that this emission dominates the
train emission immediately after the meteor, then in order to simulate
the observed decrease in intensity of the Chippenham train at longer

times the model requires that about 15% of the O, in the initial train
was dissociated.

. Even at the very low pressures of the upper mesosphere/lower

the estimated mass of the Chippenham meteoroid (see above).

thermosphere (< 107 bar), the size and velocity of this meteoroid
would create a turbulent wake (Reynolds number > 2,000). Thus we
assume that the train radius is initially 30 m, in which the air is then

heated almost instantaneously to 2,100 K. The resulting pressure
increase by more than a factor of 10 creates a shock wave which
expands radially. Assuming that this expansion occurs adiabatically,
then the pressure will equilibrate with the background atmosphere
when the radius is about 70 m, leaving a train temperature of about
1,100 K. This train radius and temperature are predicted to be nearly
constant between 97 and 86 km (heights IV and I in Figure 4), with
the concentration of ablated metallic species ranging from 2.5 x 10
to 9.9 x 10° cm™ at these respective heights. The ambient O, within
this initial train volume would be thermally decomposed. '
Following this very rapid expansion on a time-scale of less than a
second (the speed of sound is 270 ms™ in this region), the subsequent
expansion of the train is controlled by the diffusion of mass and he
For the modelling exercise presented here, this was allowed to vz
as a function of height and be different in the horizontal and vertic
with the lower limit being the atomic diffusion coefficient of
(Helmer and Plane, 1993). :
The reaction rate coefficients for 1-4 were taken from Plane
Helmer (1994). The relative concentrations of Na and Fe 3
assumed to be in their meteoritic ratio, about 1:8 (Plane, 1991).
On the relatively short time scale of the train (minutes rathe
hours), and particularly in the presence of elevated concentrati
atomic O, it is very unlikely that the metallic species would be
to form more stable reservoir compounds such as NaHC
Fe(OH),. Indeed, between 85 and 100 km in the back
atmosphere the meteoric metals are overwhelmingly in the 2
form (Plane ef al., 1999).
The “green line” emission at 557 nm from the O ('S — 'D) tran
(termed [OI]) was assumed to be produced by the Barth me
with the absolute intensitv calculated using the parameteris
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Figure 9. Variation in the metal atom and O, densities across the center of the

il E.lt 98 .km, 100 s after the meteor. The vertically integrated emission
ensity which would be observed from the ground, is shown for comparison.

Own in Figure 9, after 100 s the O, concentration within the train
een reduced by orders of magnitude by the combined effects of
al decomposition and catalytic destruction. The concentration
e of the metallic species is approximately Gaussian, as expected for
ton-controlled transport. The metallic emission is strongest at the
of the train, where fresh ambient O; is diffusing inwards.
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For reasonable diffusion rates, the model does account for the general
widening of the train, the tubular structure, and the increase of the traip
width. The model also explains phase III in the brightness decay.

The model simulations of the wall separation, the wall thickness, and the
integrated intensity are plotted as a function of time in Figure 5 for
comparison with the observations at positions I-IV. In the case of the

wall separation (Figure 5a), the model is able to simulate the “average”

observed rate of separation over the first 180 s by using a horizonta]

diffusion coefficient ranging from (5-7) x 10° cm® s between 86 and 97

km, and a vertical diffusion coefficient set to the larger of either the
vertical eddy diffusion coefficient K. employed in 2D atmospheric
models [Garcia and Solomon 1994], or the molecular diffusion

coefficient with a temperature 7'* dependence (Helmer and Plane,

1993). The reason for choosing different horizontal and vertical
coefficients is discussed below. . -
Inspection of Figure 5a shows that the model, being based on diffusive

transport necessarily produces a separation that varies as time 24
whereas the observed separation increases linearly with time at all four
heights. This striking observation remains unexplained. Free expansion
is ruled out, because the passing meteor cannot have affected the air

density over such large volume. Interestingly, the thickness of the wall
does increase much more like /' (Figure 5b), in accord with a diffusion-
controlled process. Note that the rapid initial expansion of the train to :
wall separation of about 150 m, driven by a shock-heated pressure wave

(see above), is in good accord with the extrapolated intercepts of 'f]f]é

observed separations at the four heights (Figure 5a).

Although there is reasonable overall agreement, the model is unabl
match the contrast between the dark center and the walls that is appa
in the images. Figure 10 illustrates the vertically integrated emissi
intensity across the train when viewed from below, comparing mog
and observation at 89 km, 160 s after the meteor. If the trail is inde
cylinder with a luminous wall and dark center, then the model pre

that the contrast between the center and the brightest part of the walls, as

seen from the ground, is about 0.5, remaining roughly constant.
time. This factor arises simply from the fact that when vicwedl fro
ground, the center is seen against the top and bottom of the cylin L
therefore cannot be very dark. By contrast, we observe an eXpanei
decrease of contrast to about 0.1 after 120 s. The symbols ig .Fl u
show the train cross-section between 153 s and 165s at pOSItlons_-
III. The data have been scaled to the model curve to compare the co
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between the central minimum and the wall maxima. In fact, the lack of
contrast in the model is all the more striking because we have maximised
the contrast by using a smaller vertical diffusion coefficient to reduce the
vertical transport of metallic species and fresh O,, thereby minimising
the wall brightness in the top and bottom parts of the tube (Figure 8).
The lack of contrast is not explained by decreasing the initial ozone
concentration in the center faster, for example as a result of
photodissociation of ozone by the meteoric UV light (Zinn et al., 1999).

intensity (a.u.)

Distance (a.u.)

Figure 10. Contrast in brightness of center and walls in model (solid line) and
- observations. Model in units of 10* photons cm™ s,

Iso, there are significant difficulties with modeling the brightness
ehavior (Figure 5¢). The phase I decay is thought to be due to emission
the forbidden 557 nm O 'S= 'D) transition. Indeed, meteors of lesser
ntness are known to have persistent emission on a time scale of
ut 10 seconds, sometimes referred to as the meteor "wake" (Halliday,
8). This is a direct result of molecular oxygen dissociation by the
eor and has been well recorded in photographic and TV video spectra
Borovicka er al., 1996). Figure 11 reproduces one of our own

ghter at and below 90 km (positions I and IT), since this is where more
ic O is produced in the meteor. The emission is predicted to decay
time scale of only about 10 s (due to its [O]’ dependence and the
' Outward diffusion of atomic O), rather than the observed 30 - 40 g
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in phase I. Note also that the [OI] line intensity should be concentrated
in the center of the train (Figure 8), rather than the train walls, whereas

from Figure 6 it is clear that at least part of the early decay is the result
of emission from the train walls.

Figure 11. Forbidden line emission of OI in the wake of a —1 Lecn‘id meteor
(Nov. 17, 1998, 19:31:11 UT). This first order spectrum was taken with a low-
resolution visible spectrometer onboard FISTA during the 1998 Leonid MAC
(Jenniskens and Butow, 1999). The metcor moved from top to bottom. Short
wavelengths are to the right.

The models predict very little change in intensity over the 174 s o
observations that comprise Phase II in Figure 5c. This is because as th
peak intensity of the walls decreases so the thickness of the wall
increases with time, and hence the integrated intensity hardly changes
This behavior does reproduce the phase III behavior as signified b
decay of intensity observed at altitudes above 90 km, and also correc
predicts that the intensity at lower altitudes of 86 and 89 km
eventually decrease to similar levels. However, the complex e
evolution of the intensity at these lower altitudes, particularly
intensity increase of Phase II, remains unexplained

4.2. ALTERNATIVE TRAIN MODELS

The present model does not include a detailed treatment of small-
turbulent mixing at the boundary of train and ambient al
observations seem to suggest that wind shear enhances the ob
luminosity, and the walls show clear signs of billowing. ThlS
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increase the interfacial area between the train and surrounding air,
enhancing the rate of chemiluminescent reactions between metallic
species and O,..If such turbulence spread horizontally rather than
vertically, this would help to explain the high contrast between train
center and walls.

The model assumes that the longer-lived emission is due to metallic
atoms reacting with O;. A rapid decline in train intensity, such as
observed in phase II at 86 and 89 km, could be because of depletion of
these metals. However, there are no reactions with background
atmospheric constituents such as H,0, CO,, O, etc. that will convert
these species to stable forms on the time scale observed. The only other
possibility is that these metals are reacting with the high concentration of
silicates and other debris in the trail, although again the time scale of 200
seconds is very short.
~ In summary, the present model coupling meteor ablation with simple
diffusive transport of the resulting train is able to account satisfactorily
for some of the significant features of this unusual event. These include
the appearance of two luminous tracks, the average rate of increase of
their separation and thickness, and some aspects of the luminous
mission decay. However, the model fails to explain the strikingly
nstant rate of separation increase, which cannot be diffusive in nature,
id the complex variation of the emission with time at some altitudes,

nongst others. Clearly, there is still much to be understood about the
ature of persistent trains.
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DUST PARTICLES IN THE AT MOSPHERE DURING THE
LEONID METEOR SHOWERS OF 1998 AND 1999
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Abstract. November twilight sounding experiments carried out in the Abastumani
Astrophysical Observatory including the Leonid showers of 1998 and 1999 provided an
opportunity to obtain height distributions of dust of meteoric origin between 20 km to
140 km altitudes. The formation of several dust layers and their subsequent descent and
dissipation were observed during these periods. The layers at 117 km and 54 km were
estimated to consist of particles of 0.0] Hm and 21-23 pm radii respectively, according
to settling velocities of these layers. The particle number density at 117 km altitude was
imated to be ~30 p cm™.

Key words: Aerosols, Leonid meteor shower, meteors, terrestrial atmosphere, twilight
ounding method.

1. Introduction

rvatory, Georgia, during the 1998 and 1999 Leonid meteor showers.
e ability of twilight events to serve as a sounding mechanism for the
tical distributions of fine dust particles suspended in the atmosphere
een 20 km to 150 km relies on the fact that, at every given moment
Ting twilight, the bulk of the scattered sunlight comes to an observer
12 distinct and rather narrow atmospheric layer. Its altitude depends
time and may be calculated. The lower cut-off of this scattering layer
termined by the shadow of solid Earth and of a dense tropospheric

ove the terminator region. Its upper boundary is a surface above
h the total scattered light is negligible in comparison with the light
from the lowest sunlit layer at the moment of measurement due
€Xponential decrease of the air density. An extra amount of a
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Abstract. The first infrared spectroscopy in the 3—13 micron region has been obtained
of several persistent Leonid meteor trains with two different instrument types, one at a

. desert ground-based site and the other on-board a high-flying aircraft. The spectra
exhibit common structures assigned to enhanced emissions of warm CH,, CO,, CO and
H,O, which may originate from heated trace air compounds or materials created in the
wake of the meteor. This is the first time that any of these molecules has been observed
in the spectra of persistent trains. Hence, the mid-IR observations offer a new
perspective on the physical processes that occur in the path of the meteor at some time
after the meteor itself has passed by. Continuum emission is observed also, but ils
origin has not yet been established. No 10 micron dust emission feature has been
observed.

Keywords: Meteors, meteoroids, mid-IR spectroscopy, persistent trains

1. Introduction

Spectroscopy of meteors and persistent trains in the infrared (IR) part of
the spectrum from about 3 to 13 microns has long been expected to be a
useful tool in our efforts at understanding the composition of meteoroids

Earth, Moon and Planets 82-83: 439-456, 2000,
(©2000 Khower Academic Publishers. Printed in the Netherlands.
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and how they interact with the Earth’s atmosphere (Jenniskens and
Butow, 1999).

Shower meteoroids originate in the dust grains thrown off from parent
comets, 55P/Tempel-Tuttle in the case of the Leonids, and follow similar
orbital paths for long periods of time. Our group at The Aerospace
Corporation has been studying the thermal spectra of comets for many
years (e.g., Hanner ef al., 1994) in order to determine the temperature,
composition, and morphology of cometary dust grains. In the case of
comet 55P/Tempel-Tuttle, the thermal IR emission of dust in the comet
coma showed a gray body behavior that is typical of large grains or
organic materials (Lynch et al., 2000), but not very diagnostic of the
detailed nature of the grains.

During the heating of the grains as they interact with the atmosphere as
meteors, meteoroid fragments, molecules, or even atoms are separated
from the grain in a process of ablation (Boyd, 2000; Popova, 2000), and
are heated sufficiently to exhibit spectral signatures that could shed
additional light on at least the underlying composition of these grains,
The thermal emission from the heated grains striking the atmosphere will
appear first in the long wave IR, and shift to shorter wavelengths as the
body gets hotter. The meteor's kinetic energy is sufficiently large to
completely vaporize the meteoroid.

Moreover, the kinetic energy is sufficiently large to heat a significant
volume of air in the mesosphere and lower thermosphere. Long
persisting luminous glows are seen at visual wavelengths in the path of
bright Leonid fireballs, called “persistent trains,” which allow pointing at
and tracking of this heated air.

The first published mid-IR broadband detections of meteors, but no
spectra, were obtained during the 1998 Leonid Multi-instrument Aircraft
Campaign (Jenniskens and Butow, 1999) and are presented in Rossano,
et al. (2000). The problem with attempts at IR spectroscopy of transient
phenomena such as meteors has been the difficulty in capturing the
signals themselves with IR sensors with sufficient sensitivity, a large
enough spatial field of view and yet fine enough spatial resolution, and
spectral resolution to permit the analysis of these phenomena. Major
advances in recent years in IR sensor design, detector arrays, and data
acquisition systems have created the capability to acquire, track, and
measure these phenomena with sufficient sensitivity to provide
meaningful datasets with which to investigate meteor-related
phenomena.
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This paper reports the first mid-IR spectra of Leonid persistent trains
obtained with an imaging spectrograph, taking full spectra with each
scan, situated onboard the 1999 Leonid Multi-instrument Airborne
Campaign (Leonid MAC) on a mission to the Mediterranean, and with a
wavelength-scanning spectrometer on the ground at the Starfire Optical
Range at Kirtland AFB in New Mexico.

2. The Observations

The data were acquired with the Aerospace Mid-wave InfraRed Imaging
Spectrograph (MIRIS) and the Circular Variable Filter wheel
spectrometer (CVF). The MIRIS uses a liquid nitrogen-cooled 2D 256 x
256 InSb array and a grism (combination grating and prism, Rossano et
al. 2000) to obtain long-slit spectra and zeroth order broadband images
in the 3-5.5 micron spectral region (ibid). The slit was constructed to
permit slitless spectroscopy and imaging of meteors in the center 128
rows of the array, and also to permit narrow slit (5 pixels wide in the
dispersion direction) spectroscopy of meteor persistent trains in the 64
rows near the top of the array and the 64 rows near the bottom of the
array. MIRIS was deployed aboard the USAF Flying Infrared Signature
Technology Aircraft (FISTA) as part of the 1999 Leonid MAC effort
(Jenniskens et al., 2000). The spectral resolving power is about 50 (due
to the extended nature of the source and the slit width), and spatial pixel
size was about 0.8 mrad (0.046 ). The sensor viewed the sky through a
7nSe window while the FISTA was flying at about 10—-12 km, where the
sensor was above the majority of the Earth’s atmosphere and more than
99% of the water vapor. Complete spectra were obtained at 24 frames
per second with an observing efficiency of about 40%, generating
gigabytes of data during the MAC.

The CVF uses three multi-layer interference wedges and an Si:As
back-illuminated blocked impurity band (BIBIB) detector element
cooled to liquid helium temperatures to obtain spectroscopy from 2.5 to
14.5 microns with a spectral resolving power of about 60, with an off-
axis parabola as the collecting optic in a custom setup created for this
event. It was mounted on a steerable alt-azimuth telescope mount at the
Starfire Optical Range (SOR), Kirtland AFB (New Mexico), and the
field of view was approximately 0.25 degree. Data were obtained in a
step-and-integrate mode as DC voltages with the sensor viewing the sky
or sky plus meteoroid train. Each spectrum required about 5-10 minutes
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to acquire. Spectra on the meteor trains were compared to spectra of the
sky at the same elevation angle but at a slightly different (delta of about
15") azimuth. Sky spectra were very consistent over the course of the
night, facilitating the accurate subtraction of atmospheric and sensor
emissions contributing to the spectral signals measured while observing
the persistent meteor trains.

The wavelength calibration of the MIRIS was achieved through the use
of known absorption features in calibrated pieces of plastic and was good
to about 0.03 microns. The plastic materials, none of which was a
commercial calibration product, were taken from a variety of sources and
their absorption wavelengths calibrated on a Fourier Transform
spectrometer. The CVF wavelength calibration was performed with an
Oriel single-pass grating monochromator to better than 0.3 of a spectral
resolution element, where a spectral resolution element is about 0.017
times the wavelength. The radiometric calibrations of both sensors were
accomplished through observations of extended blackbodies designed
and built for this purpose at The Aerospace Corporation. These sources
have been compared to NIST-traceable cavity blackbodies and shown to
have an emissivity of about 95-98% over the entire spectral range of
interest here except in the 8—10 micron region, where a small (~10%) dip
is observed due to glass beads in the 3M Black Velvet paint used to coat
the blackbodies. The blackbodies are heated by Kapton-coated extended
heater elements and controlled through either an automatic servo-
controlled heater or by manual control of a Variac transformer, in both
instances using thermocouples on the blackbodies to determine the
temperature of the sources. There is an absolute temperature uncertainty
in the surfaces of the blackbodies of about 1-2 K due to the uncertainty
from the thermocouple and the paint thickness and non-uniformities over
the surface of the blackbodies. The temperature stability was typically
0.2 K.

Both IR sensors utilized bore-sighted optical sensors (CCDs) to obtain
starfield information for pointing determination and for direct
simultaneous viewing of the meteor trains that were being measured in
the IR. Pointing alignment between the IR and visible scenes was
verified using bright sources such as the moon and man-made sources
(landing strip lights). At SOR, initial visual sightings of the trains led to
verbal direction to steer the sensors toward a particular part of the sky,
and then visible CCD images were used to guide the commanding of the
telescope mount to perform fine positioning of the IR beam onto the
train. For the FISTA observations, initial detections in the visible caused
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Figure 2b. Semi-log plot of the intensity from the "Y2K" train at 04:02:19 UT
reported by MIRIS.

The same data are shown in a semi-log plot to bring out the molecular
bands superposed on a continuum rising towards five microns (Figure
2b). Note that the alternative placement of the continuum, with a CO,
band in absorption, is a less likely choice because it would imply a very
high abundance of absorbing molecules and / or solid materials in
atmospheric windows from 3.4—4 pm and around 5 pum, for example.
The nature of this continuum is not understood at this time. We are
trying to assess the relative likelihood of thermal emission by small solid
particles versus a molecular origin such as blended water vapor lines
typically found in this part of the spectrum. No optically thick
(blackbody) or thin (graybody) thermal emission at T > 1000 K, such as
would be seen from hot dust grains, has been detected at this time after
the passage of the meteor. Such a hot thermal emission would have
resulted in a continuum rising towards shorter wavelength in this regime.

3.2. CVF RESULTS

Ground-based CVF data were obtained on five trains that occurred
during the nights of Nov. 17 and 19, 1999 UT. Due to cloud cover on
the night of the peak of the shower (Nov. 17/18), no spectra were
collected that night. The IR signatures were observed to last at least as
long as the visible signatures, in some cases more than 20 minutes. On

M $5-91
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a command to turn the plane to a proper heading, and then the eyeball
mount was steered by hand while monitoring the CCD image to position
the slit of the IR sensor on the train.

Figure |. Approximate position of the MIRIS slit on the "Y2K" persistent train
at 04:02:19 UT on Nov. 18, 1999, The white box indicates the location of the
MIRIS slit and the dark marker in the top center of the image was used for
positioning the camcorder relative to the image intensifier.

3. Results
3.1. MIRIS RESULTS

The airborne MIRIS data were obtained the night of the storm, 18 Nov.
1999 UT, with the best spectrum recorded being that of the so-called
"Y2K" train (Figure 1), caused by a —13 magnitude Leonid fireball at
04:00:29 UT (Jenniskens and Rairden, 2000). The train was observed
from about 04:02 to 04:09 UT. During our observations, the train was at
an altitude of 83.2 = 1.0 km, which corresponds to positions 14—-18 in
Jenniskens and Rairden (2000), at a distance of 205 km from the FISTA
aircraft and 19° above the eastern horizon at the airplane's altitude.

The train was observed by MIRIS in both zeroth and first orders. It
was first observed as a zero order image in the slitless region of the

M s5-99
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spectrograph, and then MIRIS was repositioned to place the brightest

i part of the train onto the narrow slit which spanned the upper 64 rows of

the array. The train spectrum was observed over approximately 8 rows

up and down the narrow slit. Adjacent rows on the array do not show the

enhanced signal levels seen on the train and were used to subtract the

¥ signals due to sky emission and instrumental background from the train

" E spectra. An average scan was made of about 20 frames, representing 10

i1 msec exposure each at Im50s after the fireball, at a time when the

brightest part of the train was first positioned in the slit of the
spectrograph (Figure 1).
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Figure 2a. Linear plot of the intensity from the "Y2K" train at 04:02:19 UT
reported by MIRIS.

Figure 2a shows the MIRIS data on a linear plot. Superposed on a
continuum that rises towards longer wavelengths are seen several broad
emission features. A small feature at 3.4 micron is readily identified as
the C-H stretch vibration band, possibly of the molecule CH, or some C-
H bearing complex organic molecules. The strong emission feature
between 4.4 and 5.0 microns is attributed to emission from CO (see
Section 4). Surprisingly enough, no CO, emission is detected around 4.3
microns. Strong emission bands in the 3.5-4.2 micron region of the train |
spectrum remain unexplained at this time.
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the first night at SOR, some of the trains that were seen in the visible had
dimmed by the time the platform was pointed in their direction and the
IR data were taken even though the visible evidence of the trains on the
CCD images was gone. However, IR spectra similar in nature to those
shown here were still obtained, suggesting that the IR signatures were
longer-lived than the visible emissions.

We present spectra and discuss two trains. The "Puff Daddy" train was
caused by a bright Leonid meteor at 10:05 UT on Nov. 19, Az =34, El =
35. A second train was observed following a bright Leonid at 12:26 UT
on Nov. 19, Az = 0, El = 29 to 34 (the trail started at an elevation of 29
degrees, and drifted up to an elevation of 34 degrees, while the
instrument tracked the trail as it drifted). Most data pertain to the "Puff
Daddy" train, which was about 150-200 km away from the observers at
an elevation angle of about 30 degrees.

Three narrow wavelength regimes were studied in coarse spectral steps
first. Those wavelength regimes were chosen with the expectation that
nitrogen-bearing molecular and CO, molecular emissions similar to those
seen in auroral displays might be emitting in the meteor train. These
narrow wavelength regions are the small pieces shown in Figures 3, 5,
and 6. However, because the signal appeared to peak outside the chosen
narrow wavelength pieces and we really did not know what to expect, it
was decided to map the full wavelength regime (2.5-14.5 microns),
which resulted in the full scans shown in Figures 3, 5, and 6. While each
wavelength position was integrated and stored, the train gradually
decreased in intensity and the spectral shape may also have changed
during the scan. It took about 5 minutes to obtain the three narrow
regions, and approximately an additional 20 minutes to obtain the three
complete spectra. At this point, the train was about 26 minutes old.

3.2.1. The 2.50-4.35 micron wavelength region (wedge 1)

Figure 3 shows the data obtained with the CVF over the short
wavelength filter wedge with the emission due to the C-H stretch
vibration band prominent at 3.3-3.4 microns. The unidentified emission
band at 3.7-4.2 microns is present in the CVF data as well as in the
MIRIS data at about the same relative intensity compared to the C-H
stretch vibration.  Unlike for the MIRIS data, a very rapid increase
coinciding with an onset of the CO emission band occurs above 4.0
microns. The data do not appear to have saturated above 4.4 microns and
the rapid increase should represent the spectral band shape.
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Figure 5. CVF spectrum of the train of meteor 10:05 UT Nov. 19, 1999, taken at
10:16 UT, with a strong H,O emission peak. Inset shows the earlier narrow scan
at time 10:07 UT, with strong CO, emission at 4.3 microns (same units as
Figure 4).
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Figure 6. CVF spectrum from 7.5 to 14.5 microns of the same train observed to
obtain the data shown in Figures 3 and 5. The data acquisition consisted of
taking the short pieces in all three figures first, followed by the acquisition of the
entire 2.5 to 14 micron spectrum. The strong absorption seen near 13 — 14.5
microns is unexplained, as is the dip from 7.7 to 8.3 microns (same units as
Figures 4 and 5).
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Figure 3. CVF spectra of the train of the meteor that occurred shortly before
10:06 UT, Nov. 19, 1999. The measurements were started at 10:06 UT (short
spectrum) and at 10:11 UT (full scan). The effect of the decreasing train

intensity between the acquisition of the narrow spectral piece and the full
coverage can be seen.

Radiance (10°° WemZum'sf')
(3%

o Ll
25 3.0 a5 40 45
Wavelength {um)
Figure 4. Short wavelength wedge CVF scan of the train of a second meteor at
12:26 UT. These data were taken from 12:27 to 12:32 UT Nov. 19, 1999,
Compare to Figure 3.
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Given the manner in which the data were taken and processed, that is,
by subtracting the spectra obtained while observing the sky at the same
elevation as the train but at a different azimuth, one might question the
validity of the spectral shapes seen here. The sky signal might not have
been constant over the time between meteor data acquisition and sky
acquisition, or the elevation angle might not have been accurately set or
maintained, or the sky signal shape or amplitude might have been
dependent on azimuth. In fact, the shape and amplitude of the sky
spectrum repeated well over the entire night for the same elevation
angles. However, if spectra of two different meteor trains were to
exhibit the same or similar spectral structures while the sky spectra over
the night showed differences only at a much smaller signal level, it
would lend credence to the data acquisition and processing methods.
Thus, for comparison, the spectrum obtained on another meteor in this
wavelength region of the spectrum is shown in Figure 4. The spectra of
Figures 3 and 4 are very similar. In fact, similarly shaped spectra were
obtained on three other Leonid meteor trains during this campaign.

3.2.2. The 4.3—7.8 micron wavelength range (wedge 2)

The detection of the CO, band with the CVF occurs only during the first
quick scan of one of the three wavelength regions (Figure 5). The band is
detected between 4 and 5 microns. In the subsequent full-range scan, the
CO, emission has decayed considerably.

In the full range spectrum, strong emission attributed to “warm” H,O is
observed. In this context, warm means higher than the typical 200-300
K temperature of water vapor in the lower atmosphere. The CO band
emission is not detected, possibly masked by variations in the emission
from the ever changing appearance of the train. For the same reason,
variations on the gradual rise may also not be spectral features.

The strong rise in the signal above 5 microns was unexpected,
considering the normally high opacity of water vapor in the air along the
line of sight from the ground to the meteor train. Consequently, the CVF
was operated in high gain mode over the 5-8 micron region of the
spectrum when observing the trains as well as the (cold) sky. In this
mode, the unexpectedly high train signal drove the amplifier into
saturation at wavelengths from 6.7 to 7.8 microns.
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3.2.2. The 8~14 micron wavelength range (wedge 3)

The data acquisition in wedge 2 is stopped after 7.8 microns, the gain
changed from high to low, the filter wheel advanced to the third filter
wedge, and the user prompted for an input that it is OK to continue the
data acquisition. This procedure takes more than enough time for the
saturation effect of the instrument to go away in the next (8—14 micron)
range, and the change to low gain also speeds up the electrical recovery
from saturation.

Figure 6 shows the CVF data of the long wavelength regime from the
same train that was observed to obtain the data shown in Figures 3 and 5.
The scale is significantly expanded. This spectrum exhibits a puzzling
downturn at wavelengths greater than 13 microns, which was more
prominent in the earlier narrow spectral scan than in the later full scan.
This occurs in the part of the spectrum dominated by the edge of the 16-
micron atmospheric CO, band. The decreased emission longward of 13
microns was seen in all three trains observed with the CVF at these
wavelengths.

The full scan taken later in time also exhibits an unexplained dip in the
7.7 to 8.3 micron region. (The small negative signal from ~8.3 to 10
microns is consistent with the uncertainty in the sky subtraction process,
and the 9.6 micron dip may well be due to the known azimuth-
dependence of ozone emission from the sky.) There is not enough
additional data around 8 microns on other trains to address the reality of
this dip in the train spectrum, and it seems inconsistent with the large
excess observed with wedge 2 (Figure 5) just a short time before. We
believe the multiple train observations of the enhanced 5-8 micron
emission and the 13-14 micron dips are evidence for those features
being real, but we do not have enough data for the 7.7-8.3 micron region
to make a similar claim. Additional data will have to be acquired on
more trains to address this issue.

4. Discussion

The emissions here reported do not originate from airglow-type
chemistry that was proposed as an explanation for the optical luminosity
features observed (Kelley et al,, 2000; Jenniskens et al., 2000b). The
mid-IR spectral features are assigned to enhanced emissions of CO, CO,,
CH, and H,0, which may originate from heated trace air compounds or
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It is not certain that the rise itself must be due to warm water vapor
band emission centered at 6.24 microns, or whether there may be thermal
dust continuum emission analogous to that seen in cometary spectra.
However, the absence of strong continuum dust emission in the 8—13
micron region (wedge 3, Figure 6) argues against a broad thermal dust
continuum with or without silicate emission, and is consistent with the
rapid decline expected in warm water vapor emission beyond 7 microns.

One difficulty with the warm water vapor interpretation is that the
warm gas must have a temperature above 200-300 K relatively long
after the meteor, to avoid being completely absorbed by warm lower
atmospheric water vapor between the ground-based observation station
and the meteor train.

4.5. OTHER FEATURES

Given the detection of CO, band emission at 4.2 microns (Figure 5,
narrow scan), it was expected that strong CO, band emission would arise
above 13 microns in the first narrow scan of Figure 6. However, it is
unknown how a lack of emission in the long wavelength 16 micron CO,
band can be explained in relation to the distant train. The constancy of
the atmospheric emission at these wavelengths over the course of the
night implies much less variation over the relatively short time between
the observations of the train and of the sky (at the same elevation angle,
but slightly different azimuth, a few minutes later) than the difference
between the train and the sky. As long as the atmospheric emission is
constant, this strongly suggests that the observed dip is a real
phenomenon, and not an artifact of the sky subtraction process. The fact
that the dip was seen in all the train spectra at these wavelengths (at least
3) is viewed as evidence for some real effect other than inaccurate sky
subtraction. As we expected most of the observed CO, emission to
originate close to the sensor along the line of sight from the ground to the
train, and not to originate in the train itself, additional modeling of the
amount of emission and absorption as a function of position along the
line of sight will be undertaken in an effort to understand the data.

4.6. SYNTHESIS
Given our understanding of meteor grains based on spectroscopy of

parent cometary dust, it is unlikely that the molecules that we believe are
responsible for the emission reported here existed in molecular form in

MsS -q8
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materials created in the wake of the meteor. None of the molecules
detected here has been observed in the visible range. As such, the mid-IR
observations offer a whole new perspective on the physical properties of
meteor trains.
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Figure 7. Model calculations for hot, optically-thin CO molecules. These spectra
go from cool on the bottom to hot on the top. They have been smoothed to a
resolving power of 100 to better compare the shapes with the train data.

4.1. CO

The shape of thermal emission bands can be used to determine the
excitation temperature of the responsible molecules. Figure 7 shows
calculations for the CO molecule that is believed to be responsible for
the band between 4.4 and 5.0 microns. The shape is significantly
broader at the high temperatures of T ~ 5,000 K and T ~10,000 K that
are reported for the hot and warm visible emissions from meteors. The
train emission is more typical for a gas at T ~ 300 K, which is consistent
with the observation by Borovicka and Jenniskens (2000) that the Y2K
train temperature decreased from ~4,500 K to ~1,200 K in a mere two
seconds. It is also consistent with the results from Chu et al. (2000),
which determined the temperature of sodium emission from persistent
trains using LIDAR measurements of the Doppler broadening of the
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resonant scattering profile. Chu er al. (2000) found elevated gas
temperatures of about 230 K at 92.2 km altitude and 260 K at 92.35 km
altitude, which is ~50 K above the background ambient Na temperature
of 210 K, observed 2.9 minutes after the meteor’s first appearance. This
time lapse is similar to that present for our observations.

12,605

Warm CO, is observed by the CVF instrument in the persistent train
spectra immediately after train formation. The initial scan of Figure 5
about 2 minutes after the meteor shows the emission at the expected
position. It is not observed in the MIRIS data 1m52s after train formation
and has declined to background levels in a subsequent CVF scan taken 9
minutes later. A rapid decline of the CO, emission is implied, perhaps
responsible for the lack of CO, emission in the MIRIS data.

43.C-H

The C-H stretch vibration is observed in all MIRIS and CVF data. The
band is not well resolved. It has a gradual rise above 3.27 microns, with
possibly two maxima at 3.35 and 3.42 microns and a sharp downturn
above 3.46 microns (see first scan Figure 3).

The 3.4 microns feature in room temperature cometary dust typically
has a similar asymmetric peak with a broad maximum at 3.38 microns
and a steeper downturn at the long wavelength edge (e.g. Encrenaz and
Knacke, 1991), and is characteristic of complex organic matter rich in
CH, and CH, groups. Additional modeling will be required for the
detailed interpretation of the origin of the emission structure, but the
Occam’s Razor assignment would be to the simple, easy to form,
prevalent molecule CH,. However, we can’t rule out more complex
molecules or even organic solids at this time.

4.4. H,0

As we consider wavelengths long-ward of 5 microns in Figure 5 (and the
implication of the trend in the MIRIS data in Figure 2a), we see a
gradual rise towards 6.7 microns. It is likely that the gradual rise is
followed by a decline of emission at wavelengths above 6.7 microns as
suggested by subsequent observations in the 8-14 micron range.
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the meteor. It is more likely that the observed emissions are due to
heating of ambient air molecules (atmospheric molecules that existed
prior to the passage of the meteor), all of which are present (albeit at
very low densities) at altitudes of ~85 km in the quiet atmosphere before
passage of the meteor.

It is also possible that the interaction of the meteor with the Earth’s
atmosphere at 72 km/sec caused material to ablate and vaporize, forming
a hot atomic gas. The laboratory analyses of chondritic interplanetary
dust particles that include dust of cometary origin show the presence of
silicate minerals and organic matter (Rietmeijer and Nuth, 2000). Thus,
the dust grains that made up the meteor could be sources for the atoms in
the gas species that we observed. The evolved atomic gas from the
ablation process cooled and formed the excited molecules whose IR
emissions are reported here.

Future work will use the Modtran software package to ascertain
whether the water vapor could be ambient atmospheric molecules
excited by the passage of this meteor, or whether the very dry conditions
at the meteor altitude of ~85 km combined with the strength of the
emissions suggests or requires that the hydrogen and oxygen came from
organic and mineral components in the meteor, respectively. Note that
this does not require that the meteor body contained water (such as in
layer silicate minerals) or water ice. Vaporization of the meteor body
may have broken down organic and inorganic materials into atomic
species, thus freeing the hydrogen and oxygen necessary to produce the
water seen in emission in these data.

Further evidence may also be present in the totality of the current set of
data. The MIRIS data from multiple pointings at the train (as opposed to
the single spectrum shown here), and over a seven minute time span, will
provide a series of spectra that follows the CO and C-H emission
evolution over time. These data are expected to provide detailed
information about the temperature evolution in the train and the physical
conditions in the meteor path for the long time scales at which organic
chemistry and metal atom chemistry between meteor material and
ambient air molecules occurs.

5. Summary

IR spectroscopy of persistent Leonid meteor trains shows prominent
molecular band emissions at 3.4, 4.0, 4.3, 4.7, and 6-7 microns. The

ﬁ
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Abstract. The atmospheric trajectory is calculated of a particularly well studied fireball
and train during the 1999 Leonid Multi-Instrument Aircraft Campaign. Less than a
minute after the meteor’s first appearance, the train curves into a "2"-shape, which
persisted until at least 13 minutes after the fireball. We conclude that the shape results
because of horizontal winds from gravity waves with a scale height of 8.3 km at 79-91
km altitude, as well as a westerly wind gradient with altitude. In addition. there is
downward drift that affects the formation of loops in the train early on.

Keywords: Fireball, leonids 1999, lower thermosphere, mesosphere, meteor, persistent
train, winds

1. Introduction

A bright fireball of absolute magnitude about —13 appeared over the isle
of Corsica at 04:00:29 UT in the night of November 18, 1999. The
fireball registered on three slit-less spectrographs onboard the Leonid
Multi-Instrument Aircraft Campaign, probing various wavelength ranges
in the near-UV, visual and optical near-IR. The fireball provided the first
spectrum of a meteor's afterglow, which made it possible to study the
cooling rate of the emitting gas in the first seconds after the meteor
(Borovicka and Jenniskens, 2000). Once the afterglow had subsided, a
luminous glow persisted for more than 13 minutes. Such persistent trains
have eluded a better understanding for over a century (Lockeyer, 1869).

Earth, Moon and Planers 82-83: 457-470, 2000.
(©)2000 Kiluwer Academic Publishers. Printed in the Netherlands.




MID-IR SPECTROSCOPY OF PERSISTENT TRAINS 455

commonality of the spectra obtained from two platforms, one on the
ground and one airborne, and with two dramatically different sensors,
lends strong credence to the validity of the spectral structure seen
emanating from these long-lived trains. Not all features have been
identified with certainty. Obvious candidates are CH,, CO, CO,, and
H,0. No optically thick or thin thermal emission at > 1000 K has been
seen to date, but continuum emission from cold ~ 300 K sources may be
present. However, we have seen no evidence for expected emission in
the wavelength region of the Si-O stretch vibration at 10 micron. The
exact emission/excitation mechanisms for the long-lived (in some cases
more than 20 minutes) IR signatures are still not understood. Future
work will include modeling of the passage of the meteor through the
atmosphere to investigate the heating and cooling of meteoric and
atmospheric materials, and to model the molecular emissions at the
various wavelengths to discriminate between atmospheric and meteoroid
sources for the atoms.
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Catalogue of Persistent Train | : Meteor Train Images During 1988-1997 and the
Development of an Optimum Observation Technique
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Catalogue of Persistent Trains|: Meteor Train Images during 1988-1997 and the
Development of an Optimum Observation Technique
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Abstract

Images of persistent meteor trains successfully detected by amateur observers in Japan during 1988-1997
were archived. The archive contains 122 images for 37 gterdi meteor trains including six simultaneous image
sequences from multiple-site observations. Photographic technique for detecting the fine structure of the faint lu-
minescence of meteor trains was established in thi®gelt became clear that snapshots of short exposures are
valuable for the morphological study of persistent trains. As a result of the application of this technique, spatial and
time resolved images of persistent trains were gradually improved during 1988-1997, leading to the MEteor TRain
Observation (METRO) campaign in Japan.

Key words: Persistent meteor train, Imaging, Simultaneous observation, Amateur observers, METRO campaign.

cence of meteor trains was the following: high-sensitivity film
of ISO 1600 or grater (frequently with intensifying develop-

Meteor trains are identified as faint and thin luminous ment), wide aperture lens o&2.8 or brighter, and short ex-
plasma clouds that can be seen after the appearance of brighfpposure time. Typical instrumentation for meteor train obser-
meteors. Most of meteor trains usually disappear within a few vations is shown in Figure 3. Initially, a 50 mm lens ctE.4
seconds; however, some meteor trains can present from 10was mainly used, whereas a 200 mm telephoto lens for detailed
minutes to 1 hour. These long-lasting trains are defined as per-imaging was used in 1997. Meteor train imaging method as
sistent trains. However, the detailed mechanism of the lumi- well as photographic resolution and sensitivity had been grad-
nescence of persistent trains has not been clarified yet. Persis-ually improved during 1988-1997, leading up to the MEteor
tent train phenomena are so rarely observed that the archivedTRain Observation (METRO) campaign in Japan during the
images are very valuable for the investigation of the morphol- Leonids’ storm period 1998-2002 (Toda et al. 2003).
ogy of persistent meteor trains. In this catalogue part |, images of persistent meteor trains

Such persistent trains were reported by general public which had been successfully photographed by amateur ob-
from ancient times (Watanabe and Nagasawa 2000). Persis-servers in Japan during the period 1988—-1997 are archived.
tent train drawings, shown in Figures 1-1 to 1-3, were quoted The results obtained during 1998—-2002 will be published in
from ancient personal notes or diaries, which were written in the catalogue part Il (Higa et al. 2004).
19th century (the “Edo” era) in Japan. Figures 2-1 and 2-2 are 5 Image archives
recent sketches recorded by amateur observers in 1982 and in™~ 9
1992, respectively. The former image shows a spiral struc- 37 observations of persistent trains obtained between
ture whereas the latter is a “chopsticks” shaped train. Strong 1988 and 1997 in Japan were archived. About half of the
motivation to observe meteor trains in detail was led by these images were photographed by the authors. The other images
strange images. Assuming the former appeared at 100 km al- were observed by a few pioneers in their own trials and were
titude above the observer, the both of diameter and repetition collected afterward. Table 1 is an observation summary con-
wavelength of the small-scale spiral can be found to be about taining the following information: name of the parent meteor
900 m. In order to investigate detailed morphology of persis- shower, observed date and time, observer, number of obtained
tent trains, photographical observations using telephoto lens images, focal length f and F-number of lens used, observation
are necessary. Due to the rapid morphological change of me- site (city or town, prefecture), and image sequence code.
teor trains, quick aiming at persistent trains and short expo-
sures less than 5 seconds are very significant. 2.1 Code of image sequence

Meteor train observations have been led by amateur ob- The observation code of each image is based on the name
servers because large amount of their observations could de-of the parent meteor shower, observation date and time, ob-
tect the exceedingly rarend unexpected phenomena. The server, and photographical conditions.
photographic technique applied to detect the faint lumines-  (examples)
* Meteor Train Observation Campaign, 1-16-13, lzumi, Sugi- 123456789012345678901-234567 (column numbers)

’ ' ' 0198810220231 _yanmanam 1CF01

nami, Tokyo 168-0063, Japan.
** Kochi University of Technology, 185, Miyanokuchi, Tosaya- L200111190116Bt odamasazMF01

mada, Kochi 782-8502, Japan.

1. Introduction




Table 1. List of archived persistent trains. All cases (37 sequenc@9fmains) were observed in Japan during 1988-1997, including 6 groups dfasienus observation from multiple sites (Train
3,4, 11, 18, 19, and 23). Images archived in Figures 4-1 to 4-8 are numberbld bpnd ‘Images’ of this table. Code of each image sequence is labelldtbbyle described as the text of
subsection 2.1. Though the number listed in the column of ‘images’ means whole obtained samples, not every image was archived in Figures 4-F tdedaBwv&@nquoted from referred

articles (Ueda 1988, Noda 1993, Toda 1993, and Shiba 1998).

1%}

No. Train Shower Observationdate Time with error Observer Images f F Observation site Code of image sequences
1 1 Orionids  Oct. 22, 1988 02:31:19+2s Y. Yamanami 3 50 1.4 Yuni, Hokkaido 0 198810220231_yamanami 1CFO1
2 Orionids  Oct. 22, 1988 03:15:30+2s S. Suzuki 4 50 14 Yuni, Hokkaido (0] 1988102%831 b_suzukisal1CFO1
3 .. S. Shiraishi 3 85 20 Hoshino, Fukuoka 0 198810220404_shiraish1CFOT
4 Orionids ~ Oct. 22,1988 04:040242s 1 gy 5pe 6 55 18 Takezeki Miyazaki O 198810220404_minobetalCFO1
5 .. S. Suzuki 11 50 14 Yuni, Hokkaido 0 198810 _suzukisa
¢ 4 Oronids Oct. 22,1988  04:08:4122s  wynghe 7 50 14 Atsuma, Hokkaido O 198810220408_watanabolCFO1
7 5 Leonids Nov. 18, 1990 03:16:53+2s M. Toda 1 50 14 Gotemba, Shizuoka L 199011180316_todamasaiMFO1
8 6 Leomds  Nov. 18, 1991 04:08:45+15s M. Toda 10 105 18 Gotemba, Shizuoka |: 199111180408_todamasa1MF02
9 7  Taurids Nov. 18, 1991 05:01:48+2s K. Maeda vidleo 24 1.4  Kiyotake, Miyazaki T 199111180501_maedakou1MVO1
10 8 Perseids Aug. 13,1993 02:49:10+10s T. Noda 1 50 20 Yamamoto, Miyggi P 199308 i30239_noaatsuRicF01
11 9  Perseids Aug. 13, 1994 01:33:30+30s H. Yamanaka 2 50 1.4 Zao, MiyagL P 199408130133_yamanaka1MFO1
12 10 Perseids Au&. 13,1994 01:42:30+30s M.-Y. Yamamoto 5 50 1.4 Za&l)), I\/ﬁ!halgii’k P 199408130142_yamamotol m::g_}_
13 . M. Toda 37 105 1.8 Gotemba, Sht a L 199511190138_todamasal
14 11 Leonids Nov.19,1995 ~ 01:38:00+2s H. Shioi 7 55 18  Nosaka, Chiba L 199511190138_shioihir INFO1
15 12 Leonids Nov. 19, 1995 about 02:30 S. Suzuki 3 50 1.8 Minamimaki, Nagano L 199511190230_suzukisalCF01
16 13 Leonids Nov. 19, 1995 about 03:00 S. Suzuki 1 50 1.8 Minamimaki, Nagano L 199511190300_suzukisa1CF01
17 14 Leonids Nov. 19, 1995 03:33:30+30s M. Yamasaki 4 50 1.2 Koishiwara, Fukuoka L 199511190333_yamasaki1CFO1
18 15 Perseids Aug. 13, 1996 01:32:50+2s M.-Y. Yamamoto 3 50 14 Zao, Miyagi L 199608130132_yamamoto1MFO1
19 16 Perseids  Aug. 13, 1996 02:02:32+2s M.-Y. Yamamoto 4 50 1.4 Zao, Miyagi L 199608130202_yamamoto1MFOT
20 17 Orionids  Oct. 22, 1996 about 04:00 S. Suzuki 12 50 1.2 Fujinomiya, Shizuoka O 199610220400_suzukisalCFO1
21 . o M.-Y. Yamamoto 13 50 1.4 Y amamoto, Miyagi L 1996111 _yamamoto
gp 18 [Leonids  Nov.17,1996  O4:1127%2s = 5 Nprigy S 50 20 Daigo loaraki L 199611170411 nar i taat1CFO1
23 S. Suzuki 20 50 1.2 Fujnomiya, Smzuoka L 1996111/0515_suzukisalCFOT1
24 19 Leonids Nov. 17,1996 05:15:50+2s C. Shimoda 5 135 28 Asahi, Nagano L 199611170515_shimodac1MFO1
25 M. Kobayashi 1 85 1.4  Oizumi, Yamanashi L 199611170515_kobayash1CFO1
26 20 sporadic  Nov. 3,1997 03:29:09+10s N. Tanaka 2 50 20 Kitago, Miyazaki S 199711030329_tanakana1CFO1
27 21 Leonids Nov. 18, 1997 01:51:49+5s S. Suzuki 3 50 1.2 Fujinomiya, Shizuoka L 199711180151_suzukisalCFO1
28 22 Leonids Nov. 18,1997  02:01:30+30s S. Suzuki 1 50 1.2 Fujinomiya, Shizuoka L 199711180201_suzukisaiCFO01
29 M. Toda 20 200 20 Gotemba, Shizuoka L 199/11180242_todamasa1CFO1
30 23 Leonids Nov. 18,1997 02:42:26+2s M. Kobayashi 9 85 14  Oizumi, Yamanashi L 199711180242_kobayash1CFO1
31 S. Suzuki 5 50 1.2 Fujinomiya, Shizuoka L 199711180242_suzukisa1CFO01
32 24 Leonids Nov. 18,1997 02:44:47+2s M. Toda 11 200 2.0 Gotemba, Shizuoka L 199711180244_todamasa1CFO1
33 25 Leonids Nov. 18,1997 02:50:30+30s M. Fujita 1 50 14 Iwanuma, Miyagi L 199711180250_fujitami1CFO1
34 26 Leonids Nov. 18,1997 02:56:15+2s M. Kobayashi 5 85 14  Oizumi, Yamanashi L 199/11180256_kobayash1CFO1
35 27 Leonids Nov. 18,1997 03:10:30+30s M. Fujita 4 50 1.4 Iwanuma, Miyagi L 199711180310_fujitami1CFO1
36 28 Leonids Nov. 18, 1997 03:48:30+30s M. Fujita 3 50 14 Iwanuma, Miyagi L 199711180348_fujitami1CFO1
37 29 Leonids Nov. 18,1997 05:26:45+2s K. Maeda 3 200 1.8 Kiyotake, Miyazaki L 199711 |§652§_maeaakou|CF6|

ageuelep\ |- T pue eBIH A ‘O10WEBWEA A"\ ‘epOL ‘N



Catalogue of PersistentTrains |: Meteor Train Images during 1988—-1997 and the Development of an Optimum Observation Technique

=Gy

~$;b,{{ Sy )b 6%

AR N

1

[\
U

3N
S M

ek GNP GRS

\s%}ii’jk\?c;hw,

R s
et LoSF Arag e

~

o i
AL Lot e
S

N ér.a

Ay

3?

S S

AE

ﬁnf_';l’.ﬁ

Flg 1. Ancient sketches of perS|stent meteor trains. Figure 1-1
is quoted from “Tsurumura Nikki” (Diary of Mr. Tsu-
rumura Kaneko) written in813 at Ishikawgrefecture.

In description, the author wrote ‘In the dawn of Dec. 8,
1813, at about 6 o’clock, a fireball flew from east to
west. It looked like a gold shinning gourd and slowly
flew to northern west with remaining white fabric trail
along the path.” Figure 1-2 is quoted from “Kadoy-
ashiki Kyusuke Oboegaki” (Notes of Mr. Kadoyashiki)
written in 1836 at Iwate pffecture (Watanabe 1994).
The author wrote that ‘A red luminescent cloud ap-
peared in the west at about 2 or 3 o’clock at night in
Oct. 13, 1836. Its shape was like this.” Figure 1-3
was quoted from “Kitatani Hanzou Kiroku” (A memo-
randum of Mr. Kitatani) witten in 1862 afTokushima
pref. The author wrote that ‘About 4 o’clock at night of
Nov. 11, 1862, something luminescence like a fireball
or a fire on grind stone was found in the sky at slightly
southward from the zenith. Though it was a moonlit
night, the light whose size was a bolt of silk cotton
shined into my house for a while and the luminescence
was lasting for about one hour. Then, it became white
and disappeared.” These ancient Japanese descriptions
were collected by Watanabe and Nagasawa (2000) and
Watanabe, Y. (private communication, 2003).

. .

(explanations)

column0l1 : Name of the parent meteor shower

(‘L' : Leonids, ‘O’ : Orionids, ‘P’ : Per-

seids, ‘T’: Taurids, and ‘S’ : sporadic me-

teor)

column 02-13: Observation date and time:
02-05: Year (YYYY)
06-09: Month and day (MMDD)
10-13: Hour and minute (HHMM) as Japan Stan-

dard Time (JSEUT+9h)

Fig. 2. Recent sketches of persistent meteor trains observed
with a binocular. The persistent train shown in Figure 2-
1 was observed 5-10 seconds after the appearance of an
Orionids’ fireball of —8 magnitudes on Oct. 23, 1982
(Suzuki 1989). The field of view of 935 mm binocu-
lar was 7.3 degrees. The train shown in Figure 2-2 was
observed after an Orionids’ fireball ef7 magnitudes
appeared at 1:31:05 on Oct. 22, 1992. Description of
“Dark-striped pattern was spreading as it sprang from
the center to both sides. The empty space was found
along the center line and diffused as time went by.” was
added (Abe, private communication, 2003).

column 14  : Alphabetical order if multiple trains ap-
peared within a minute

column 15-22: Observer name code (8 characters)

column 23  : Camera number for each observer

column 24  : Type of color (‘C’ for color imaging, ‘M’
for monochrome one)

column 25 : Type of camera (‘F’ for film, ‘D’ for dig-

ital device of CCD or CMOS, and ‘V’ for
video)

Image number of each sequence by 2
columns

column 26-27:

2.2 Field of view of theimage

All observations reported in the period 1988-1997 were

taken with a 35 mm size photographic camera with an objec-

fédunl
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meteor trains were observed. Six groups of image sequences
were successfully operated from multiple stations as well as 23
examples were observed from a single site. The archive con-
tains at least one image for almost every sequence, however,
not every image is shown in this paper due to the limitation of
space. Electronic file archives of the 252 meteor train images
are also available on the web site (Yamamoto et al. 2004).

] ] o ) 3. Discussions
Fig. 3. Typical 35mm size photographic cameras used for

persistent train imaging. Wide aperture lenses were The archived persistent trains of Orionids in 1988 (Figure
selected for detecting faint luminescence. Equipped  4-1) were the first significant examples for simultaneous ob-
lenses are a 50 mm lens o£&.4 (left) and a 200 mm servation of the decade 1988—-1997. Before 1994, several pio-
telephoto lens of £2.0 (right), respectively. The cam- neer examples of photographical persistent train observations

era with telephoto lens should be loaded with another  were taken with short exposure time within 15 seconds. In
sub-camera with a 50 mm lens because wide field of  ths trial period, the focal legth of each observation was less
view is effective for determining the direction of field than 105 mm, so that the spatial resolution of each train image
;Sn g\;gl-lg%i)fzc;rr1(;a\;tesﬁ-fsacl);ﬁcr:go:énzgrzds;gtc;g}n? isstenaedgi was relatively insufficient. In 1995, simultaneous observation
essary for quick aiming. A photographic camera with of_a Leonids’ persistent traln_ was ob_talned by.two obs_ervers
autowinder and data backup system has great advantage (_F!gure 4-3). However, the trlgngulatlon cond|t.|0n was insuf-
for accurate persistent train imaging. ficient because one observation was made with a long expo-
sure time. In 1996, two successful multiple-sites observations
of Leonids’ trains were carried out (Figures 4-5 and 4-6). The
Table 2. Field of view of typical lens for 35 mm film camera. triangulation results of simultaneously observed trains were

shown in Table 3. In 1997, three series of close-up Leonids’

Focal length F'Sld of view train images were successfully taken with a 200 mm telephoto
(mgrg) 5(3?:3?; %) Iens,_ so that two_spiral-like train image se_quences_were_clearly
50 39 0¢<26.0 obtained (see Figures 4-7 and 4-8). Using two-sites simulta-

85 25 3¢17.0 neous observation of the spiral-like train, Shigeno et al. (1998)

105 19.5¢13.0 reported triangulation results. In this observation period dur-
135 15.1x10.1 ing 1988-1997, amateur observers successfully obtained sig-
200 10.3% 6.8 nificant results of persistent trains by repeated attempts with

progressing the spatial/time resolution of each image, leading
up to the subsequent observation campaign (Toda et al. 2003).

After the first simultaneous observations of the Orionids’
train, the following 10 years of effort were devoted to deter-
mining optimum technique for fine imaging with high spa-
tial/time resolution,i.e., short exposures less than 4 seconds
with telephoto lenses longer than 200 mm. In this decade be-
fore the METRO campaign, there were 17 observers working
to detect persistent train images. The total number of suc-
cessful results was limited to 37 examples; however, these tri-
‘als were very worthy to evaluate the observation technique to
2.3 Other parameters measure persistent train structures in detail.

In Figures 4-1 to 4-8, ‘Ts’ means start time of each ex- Upper atmospheric wind with velocity up to 150 mts
posure, counted from the appearance of the parent fireball. was reported in the altitude range from 90km to 100km
‘Exp’ represents the exposure period for each snapshot. Be- (Larsen 2002). The altitude range typically corresponds to
cause of the rapidly diffusing feate of persistent trains, im-  the height of meteor train luminescence. Being affected by
ages with short ‘Ts’ and ‘Exp’ are very significant for mor-  the rapid atmospheric streamprphological changes of per-
phological study. Some observers selected larger ‘Exp’ near sistent trains were frequently observed with kink and/or large
the end of their observation sequences in order to obtain clearloop structures. Namely, simultaneous imaging of meteor
images of faint long-lasting trains. Absolute observing time trains with long exposure can reveal the wind velocity of the
is also significant for multiple site observations. By using a background atmosphere (Lillend Whipple 1954; Sugimoto
tape recorder, click sound of cameras can be simultaneously 1984). However, in order to obtain the fine structures of per-
recorded with sound of the time signal, so that the exposure sistent trains, rapid repetitioof short exposure is required.
timing of each snapshot was accurately obtained in many re- Comparing the observations in 1988 with that in 1997 (See
cent cases. Accurate time signal can be easily obtained when-Table 1), exposure time was reduced from 15 s to 4 s and the
ever either a GPS receiver or a shortwave radio is available. focal length of the telephoto lenses changed from 50 mm to

Meteor train images obtained in the period 1988-1997 200 mm. The field of view of a 200 mm lens was effective for
are archived in Figures 4-1 to 4-8. Here, images are ordered detailed imaging. Spatial/time resolution of the images could
by their appearance date and tinethis period, 37 persistent  be successfully improved by these technical advantages.

tive lens except for sequence No. 9 (video observation with a
Hamamatsu VB 1366B image inensifier. Focal length and F-
number of lens and some other features were varied by each
observer. The size of each field of view is proportional to the
focal length of each selectednie Typical focal lengths and
corresponding fields of view are listed in Table 2. The field
of view for each image sequence is written as ‘FOV’ in the
Figures 4-1 to 4-8 because many samples are trimmed images
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Code=0198810220231 yamanamil CFO1 Code=019881 0223] 5 suzukisal CF01

1-01. Ts xp=15, FOV 2-01. Ts=9, Exp=18. FOV=13.1x87
Code=0198810220 shlralshICFm Code= 0]98810220404 mlnobetaICFOI

Code= 70198'8102204bs'suzuk.salcml Code= 019831622"6408 _watanabo1 CFO1

6-01. T==4, Ex [321 FOW=13.0x8.7

5-02. Ts, 6 . Ts=12, Exp=10 6—-03. , Exp=10
Fig. 4-1. Image sequences of the persistent train No. 1 to No. 6. Image sequences of No. 3 and 4 as well as No. 5 and No. 6 were
simultaneously observed with each other.
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Code=L199011180316_todamasal MFO1 Code=T199111180501_maedakoul MVO01

8-03. Ts=41, Exp=4

. Ts 8-04. T==59, Exp=4 8-05. xp=-
Code=P199408130142 yamamotol MFO1 Code=P199308130249 nodatsukl CF01

12-01. Ts=15,

p=10 12-04. Ts=81, Exp=10
Image sequences of the persitent train No. 7, 8, 9, 10, and 12.
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Code=L199511190138 todamasal MFO1 CodePl 994081301 33,yaanakal MFOI

13-01. Ts=10, Exp=4, FC 11-01. Ts=15, Exp=10, FO

13-02. Ts=14, Exp=4

e shnonhl-rICFOI.

13-25. Ts=111,

13-33. Ts=144, Exp=4 —37. Ts=161, Exp=4

Fig. 4-3. Image sequences of the persistent train No. 11, 13, and 14. A two-sites simultaneous observation was established betwen No. 1
and No. 14.
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Code=L199511190300_suuzkisal CFO1 Code=L199511190230_suzukisal CFO1

16-01. Ts=no dat: : 5.4 15-01. Ts=no data, Exp=14, FOV
Code=L199511190333 vamasakil CFOI

15-02. Ts=no data, Exp=14

1401 T==5,E ! NV=119x7 9 17-02. Ts
Code=P199608130132 yamamotol MFO1 Code=

L 3

18-03. Ts=5H4, Exp=15 19-02. LB ) T 19-03.
Fig. 4-4. Image sequences of the persistent train No. 15 to No. 19.
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Code=0199610220400 suzukisal CF01

-

20-02. Ts=no data, Exp=14 20-03. Ts=no data, Exp=14

20-01. Ts=no ;321 4, FOV=13 / ’ 20-04. Ts=no data, Exp=14 20-05. Ts=no data, Exp
Code=L199611170411_yamamotol CFO1 . T

W

21

2901 Ts 5 158x10.5 ] : =15 ; o
Fig. 4-5. Image sequences of the persistent train No. 20, 21 and 22. Simultaneous two-sites observation was established between No. 2
and No. 22.
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Code=L199611170515_suzukisal CFO1

23-02. Ts=34, Exp=14

23-01. T==19, Exp=14, FOW=110x/.3 23-04. Ts=64, E.:-:.p:1 4 2305, 5=/79, E'.-.'|:
Code=L199611170515 shimodacl MOI Code=L199611170515 kobayash1CFO01

25-01.

'24-04, To=25, Bxp=d | : )
Code=L1929711180201_suzukisal CFO1

26-01.

Fig. 4-6. Image sequences of the persistent train No. 23, 24, 25, 26, and No. 28. Image sequence of No. 23, 24, and 25 were simultaneous
observed with each other.
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Code=L199711180242 todamasal CF01

-

29-02. Ts=14, Exp=4

29-11. Ts=502, Exp=4 29-12. Ts=57, Exp=4

29-14. T Exp=4 29-15. Ts=70, Exp=4 29-16. Ts=74, Exp=¢
Code=L199711180242 kobayash1CFO01

30-02. Ts=16, Ex

30-01. Ts=10,

Fig. 4-7. Image sequences of the persistent train No. 29 and 30. Including image sequence of No. 31, a three-sites simultaneous observatio
was established.
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Code=L199711180242 suzukisal CF01 Code=L199711180256 kobayash1CF01

31-01. Ts= 3, Exp=8, FOV=80x4.0 3401, Ta=1a, Eep=& FOV=12 75l
Code=L199711 18024_toamasal CFO1 '

e

32-02. T==18, Exp=4

©30-04. Ts=05, Exp=4 32-05. Ts=29, Exp=4

xp=4 32-07. Ts=38, Exp=4 32-08. Ts=42, Exp=4 32-09. Ts=48, Exp=4
711180310 fujitamil CFO1 Code=L199711180526_maedakoul CF01

35-01. Ts= 3, Exp=10, 3 37-01. T==75, Ex

Fig. 4-8. Image sequences of the persistent train No. 31, 32, 34, 35, and 37. Image sequence of No. 31 was simultaneously observed wit
No. 29 and 30.
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Table 3. Triangulation results of simultaneously observed persistent trains. ‘Tm’ means time from appearance of parent meteor. Triangu-
lation results of trains 3, 4, 19, and 23 were quoted from referred articles by Urasaki (1989), Suzuki et al. (1989), Suzuki (1998),
and Shigeno et al. (1998), respectively. Residual error of train 23 was calculated by Shigeno (2003, Private communication).
Residual error of train 10 was relatively large because of low time consistency between two independent observations as well as
low time resolution of long exposure image of No. 14-1 (See Figure 4-3). Note that the top and bottom ends of a persistent train
are ordinarily faint and rapidly disappeared. Therefore, "t triangulation time were lestian 30 s, the top altitudes of trains
3, 11 and 18 might be about 5 kngher as well as the bottom altitudes might be a few km lower.

Train 3 4 11 18 19 23

Parent meteor shower Orionids Orionids Leonids Leonids Leonids Leonids
Observation date (JST) 10/22/88 10/22/88 11/19/95 11/17/96 11/17/96 11/18/97
Triangulation time (JST) 04:05:04 04:08:51 01:42:30 04:12:50 05:16:05 02:42:37
Tm at triangulation time (s) 62 10 270 83 15 11

Top altitude (km) 100 109 1043 98+1 100 102:0.3
Bottom altitude (km) 84 88 861 88+0.2 75 89:0.2

Real length of train (km) 19 23 25 11 26 18
Average train width (m) 580 660 1400 750 810 460

Snapshots with short exposures enabled us to clarify seids, and the comet “55P/Tempel-Tuttle (Feb. 28, 1998)” for
some tiny structures of persistent trains. Knot structures or Leonids, respectively. Although a difference of train struc-
spiral-like turbulences were found in many cases. Typical ture due to parent meteor showers was not clearly confirmed,
width of the tiny structure was about 400-1000m in the first detection rate of persistent trains for Leonids was larger than
shot of each sequence. “Chopsticks” type structures were for other showers. Leonids’ fireballs of the same magnitude
rarely detected in this observation period 1988-1997; how- could easily generate persistent trains. It is probably because
ever, if higher spatial resdiion were realized, clear “chop-  the Leonids’ fireballs have the feature of rapid incident veloc-
sticks” structures might be detected in some cases. The mor-ity, i.e, larger energy. Many failure trials experimentally indi-
phological classification of persistent trains was introduced in cated that meteors fainter thar?2 magnitudes may not gener-
another paper in detail (Higa et al. 2003). Other large-scale ate clear persistent trains; however, fireballs brighter than
wave or loop shapes were also seen. The 3-dimensionally an-magnitudes can effectively generate brilliant and long-lasting
alyzed results of these shapes might be interpreted as large-trains.
scale spirals (Yamamoto et al. 2003). Using the results of
multiple-site observations, altitude distribution of persistent
trains can be obtained. Six triangulation results of persistent Persistent train photographs observed in Japan during
trains were listed in Table 3. Highest top altitude was 109km 1988-1997 were archived. 37 results obtained by amateur ob-
whereas lowest bottom was 75 km. Real length and averagedservers successfully contributed to the morphological study of
width of each train were also shown. the exceedingly rare phenomeofpersistent meteor trains.

Applying high-sensitivity color films with short expo-  The imaging technique using 35 mm size photographic cam-
sures, color information was also available in recent train im- eras with high-sensitivity films was established in that 10 years
ages. At about 30 seconds after parent fireball appearance,period. With the efforts of many amateur observers in Japan,
the color ordinarily changed from bluish-white to orange. The the technique was developed to a systematic observation of
transition was usually seen bottomward first, probably depend- the METRO campaign for obtaining multiple-sites simultane-
ing on the composition of in-situ atmosphere and the parent ous imaging of persistent trains. The catalogue of persistent
meteor. It was also found that the shape of meteor trains trains is valuable for clarifying the generation and lumines-
changed rapidly within 30 seconds of the appearance of par- cence mechanisms of persistent trains as well as the composi-
ent fireball and remained relagly stable afterward. There-  tion and microstructure of parent meteors. Moreover, the train
fore, observations of the first 30 seconds are very impor- image sequences including the information about the interac-
tant to understand not only the morphology of the persistent tion between penetrating meteor and surrounding atmosphere
train but also its emission mechanism. Using the observation can make a contribution to investigating the upper atmospheric
style applied here, every amateur observer can contribute me-dynamics.
teor train observations because commercially produced instru-
ments are sufficient for the observations. Though the obser- Acknowledgements
vation method requires human response time, observers can The authors are very grateful to the following observers
direct a lens to a meteor train within about 10 seconds. who kindly reported their worthy observations to the archives:

This archive part | includes the persistent train images of (sketches) Shinsuke Abe and Kunihiko Suzuki; (photographs)
meteor showers of the Orionids, the Perseids, the Leonids, andMitsuhiro Fujita, Masato Kobayashi, Kouji Maeda, Tatuo
the Taurids, together with that of sporadic meteor obtained in Minobe, Atsushi Narita, Tsukasa Noda, Chikara Shimoda,
the period 1988-1997. The decade was roughly correspondedHiroyuki Shioi, Shigetaka Shiraishi, Satoshi Suzuki, Naoko
to an encounter “rush” of perihelion passage of each parent Tanaka, Oto Watanabe, Hajime Yamanaka, Yoko Yamanami,
comet: the comet “1P/Halley (Feb. 9, 1986)” for Orion- and Masakuni Yamasaki; (data collection and calculation)
ids, the comet “109P/Swift-Tuttle (Dec. 12, 1992)" for Per- Kouji Maeda, Yasuo Shiba, Yoshihiko Shigeno, Satoshi
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Suzuki, and Taro Urasaki. They also thank Yoshikazu Watan-
abe for his effort for collecting the ancient sketches. The au-
thors wish to express their sincere thanks to Dr. Kou Naga-
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No. MSS-ID  4EHH HE B MER BEREEE b EREE EREEE ERSE ZJ*;E»Fr‘l'L’.Bi ﬁ HHB RELR EEGE mERE E
Bzl BAE B Btk SHEE RN TURE RWE THEE LEE TEE RRMESE  RREGE O RRREGE RRAENE RIS ERRAE
[UT] [hhmmss] [Mag.] [km] [km] [km/s] [km] [km] [km] [km] [km] [km] [ﬁ'.] [s] [[r.] [s] [f] [s] [fe] [s] [fr] [s] [fr] [s]
13
10

| MSSIBF Nov.18,2001 174850 L L& 1.8 125.1 102- 70.4 122.4 120.6 120.0 102- 1183 116.6 3 0.10 1 0.0 043 10 033 32 1.03 19 0.63
2 MSSIBI Nov.I82001 175254 BfE 0.5 124.2 7109- 682 120.5 119.9 118.1 J109- 111.9 1109 4 0.13 1 0.0 033 6 020 61 200 51 1.70
3 MSSJBL Nov.18,2001 175928 L L& 0.0 111+ 948 69.8 I1I+ 110.6 111+ 98.0 108.0 106.5 1 0.03 11 0i0lE Bz LT 0230 s4) 180l s 1153
4 MSSIBO Nov.18,2001 180640 L L# 03 707+ 904 71.4 107+ 106.5 107+ 93.5 107+ 106.3 3 0.10 e ST 0 Z R 027 a8 2z o7 0100
5 MSSJBR Nov.18,2001 181219 L L% -0.9 129.4 //2- 71.7 125.0 123.8 124.6 1/2- 1152 1122 4 0.13 i elgl | 1on 033 e 0200 | 46 153 36 120
6 MSSIBT Nov.18,2001 181337 L L# 0.5 127.5 105-  71.5 1263 125.7 120.1 105- 109.7 1084 2 0.07 1 00 14 047 12 040 50 1.67 36 120
7 MSSJBU Nov.18.2001 181717 L L& -0.5 99+ 882 70299+ 98.099+ 88.6 982 97.1 3 0.0 pitieonii s a2ziiibs| e Ziilize) s oliia 763
8 MSSIBV Nov.18,2001 181733 H#ITE 3.9 117.8 979 64.6 113.6 111.2 - - 107.01049 6 0.20 100 - -~ E = 9 030 3 010
9 MSSIBW Nov.182001 181736 #47E 3.6 //4+ 992 528107.6 1073 - - 10521044 6 020 100 - : 5 = 11 037 5 017
10 MSSIBX Nov.18,2001 181827 L L# 0.3 1557 /22- 708 123.2 122.6 - 1 12290129 13 043 LR 0i0 = : 2 d 16 0.53 3 0.10
11 MSSIBY Nov.182001 181909 L L# 0.0 120+ 92-  71.8 116.5 1153 113.7 94.7 1093 1085 5 0.17 I 06 17 057 12 040 71 1237 54 1.80
12 MSSJBZ Nov.182001 181934 L L# -6.3 123+ 93- 712123+ 121.7 123+ 93- 1056 937 3 0.10 1 00 18 060 15 0.50 167 5.57 149 4.97
13 MSSJBa Nov.182001 182137 L L&t -4.1 119+ 111- 723 119+ 1183 119+ 111- 1147 1120 3 0.10 ool sdiaizel i istl a2 | iea s a7 IiRs 2177
14 MSSJBb Nov.18,2001 182227 L L¥ -13 720+ 912 713 118.8 117.8 117.1 96.0 110.0 108.0 3 0.10 I 00 16 053 13 043 75 250 359 1.97
15 MSSJBe Nov.18,2001 182610 L LB -3.3 /73+ 728~ 71.8 153.8 153.0 141.0 128- 128.6 [28- 14 047 1 00l 26 0:87 | 12 0401180 1267 | 54 1.80
16 MSSIBg Nov.18,2001 182822 L L# 2.6 1058 91.0 70.3 102.2 99.5 101.8 95.5 100.6 100.0 5 0.17 I @0 7 023 2007 17057 10 033
17 MSSIBp Nov.182001 184245 EfE 2.7 119.1 99.2 62.7 1183 117.7 113.3 97.1 1064 1048 2 0.07 1 0.0 12 040 10 033 38 127 26 0.87
18 MSSIBq Nov.182001 184556 L L#F -0.6 137.3 113- 71.5 126.7 124.7 124.7 113- 115.0 113- 81027 1ol e ez iteiaza | iali2i43) | 5911 97
19 MSSJBs Nov.182001 184835 L LE: 29 129.1 106- 71.4 1184 117.8 114.5 107.0 1114 110.0 8 0.27 iooisiosoiilziozs a0 s ioss
20 MSSIBx Nov.182001 185700 #%7F 3.6 117.5 /0/- 642 113.1 111.7 109.7 102.0 109.3 107.3 5 017 1 00 11 037 6 020 27 090 16 0.53
21 MSSJC1 Nov.182001 185824 L L% -2.4 1583 //4- 71.4 1363 133.7 126.5 114- 117.7 114- 13 043 1 00 21 070 8 027 84 280 63 210
22 MSSIC8 Nov.18.2001 191124 Hft 3.4 95+ 86.6 51.5 949 942 - - 940 90.0 3 010 1 00 - = : = 7 023 4 0.13
23 MSSJCI Nov.182001 192537 L L#f -7.3 147+ 113- 695 141.0 139.7 134.3 113- 11551146 3 0.10 1 00 17 057 14047 137 457 1200 4.60
24 MSSJICM Nov.18.2001 193204 #4fE 4.1 113.1 102.6 543 107.6 107.3 - - 10631046 5 0.17 1 00 - > 2 = 12 040 7 023
25 MSSJCR Nov.18,2001 194517 HLfE 4.2 121.7 103- 719 1206 119.6 - - 106.71054 2 007 1 00 - i < - 10 033 8 0.27
26 MSSICT Nov.182001 194643 L L& -3.4 707+ 93-  70.8 107+ 105.1 107+ 93.0 1054 1049 4 0.13 1 00 13 043 9 030 8 293 75 2.50
L L (=18) -1.17 133.5 91.1 71.1 125.9 119.7 121.7 95.8 112.1 107.1 0.18 0.46 0.28 2.33 1.88

FIfE  HE (n=8) 3.25 1189 97.1 613 112.0 111.1 113.7 99.6 105.9 104.0 0.14 0.38 0.27 0.73 0.50

£k (n=26) 0.17 1273 94.1 68.1 120.3 117.1 120.0 96.5 114.3 110.2 0.17 0.43 0.28 1.62 1.29
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Abstract: Just after appearing of meteors, faint illuminating trails can rarely be seen along their trajectories. The
luminescence, so-called meteor trains, rapidly disappear with changing their shapes in the sky. Meteor shower with the
most frequent appearance rate of meteor trains is “Leonid.” In 2001, during an encounter of Leonid meteor storm in Japan,
double-station observation of meteors was carried out by using image-intensified (L.1.) video cameras. Purpose of the 1.L
video observation was to obtain precise trajectory parameters of Leonid meteors, however, many video clips of meteors
with meteor trains of short duration within 3 s (short-duration meteor trains, hereafter) were found. By using a motion-
detection software, 26 short-duration meteor trains (18 examples of Leonids as well as 8 of sporadic meteors) were
successfully picked out, deriving altitude distribution of short-duration meteor trains. As a result, (1) short-duration meteor
trains averagely appeared between 120 km and 96 km altitude, (2) altitude distribution of short-duration meteor trains
averagely changes in time to be finally centered at around 107 km, with having linear dependence for their upper limit
altitudes as well as logarithmic dependence for lower limits, (3) duration time of short-duration meteor trains was in a
range between 0.1 s to 55, (4) high correlation between absolute magnitudes of parent meteors and duration time of short-
duration meteor trains, and (5) the altitude distribution of short-duration meteor trains could be explained with OI 557.7

nm luminescence and collision (quenching) process with surrounding upper atmosphere.
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Observation of Meteor trains by High sensitivity digital
single reflex camera.
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Year % Train / Meteor Method author

1990: 35% (80/2318) NE S.J.Evans and N. M. Bone(1993)
1991: 1.8% (21 /1167) NE S.J.Evans and N. M. Bone(1993)
1993: 54% (149 /2763) NE S.J.Evans and N. M. Bone(1996)
1996 : 4.0% (101 /2543) NE S.J. Evans and N. M. Bone(2001)
1999: 3.7% (656 /1510) NE N.M. Bone(2005)

2001 : 3.6% (101 /2839) NE N.Bone(2007)

2012: 28% (14 / 501) NE Fuchu Astron. Soc. (2013)

2010:12% (12/ 99) DC 2013MEFF&
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Method : NE = Naked Eye, DC = Digital Camera.
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